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Abstract. We introduce a novel approach to variational image segmen-
tation with shape priors. Key properties are convexity of the joint energy
functional and weak coupling of convex models from different domains
by mapping corresponding solutions to a common space. Specifically,
we combine total variation based continuous cuts for image segmenta-
tion and convex relaxations of Markov Random Field based shape priors
learned from shape databases. A convergent algorithm amenable to large-
scale convex programming is presented. Numerical experiments demon-
strate promising synergistic performance of convex continuous cuts and
convex variational shape priors under image distortions related to noise,
occlusions and clutter.

1 Introduction

1.1 Overview, Related Work

Various continuous variational approaches to image labelling and segmentation
have been presented in the recent literature [4, 14, 13] based on tight convex re-
laxations of the underlying combinatorial problem. While the relaxation of the
binary two-class case can be shown to compute the global combinatorial opti-
mum after thresholding [4], the non-binary case of multiple labels [14, 13] also
returns high-quality combinatorial solutions in practice, as numerical experi-
ments based on primal-dual iterations show. Unlike algorithms for fully discrete
graph-cut approaches [2] that may get stuck in a poor local minimum in the
non-binary case, their continuous convex counterparts do not suffer from such
problems. Moreover, a broad range of robust first-order minimization algorithms
from sparse convex programming are available for efficiently solving such large-
scale problems [9, 3].

Variational approaches comprise a data term and a regularization term. In
connection with image labelling, the data term is a linear form that does not
impose any restriction on the type of image features to be processed. Concerning
the regularization term, a large class of alternatives to the standard Potts prior
has been suggested in [12], all of which do not compromise convexity of the
variational approach.

While features and regularization terms can be handled quite flexibly within
a convex variational framework, this is not the case for another major clue to



reliable segmentations: shape. Substantial research work has been done on vari-
ational representations of shape statistics as additional penalty terms, ranging
from sampled contours and kernel techniques from machine learning to sophis-
ticated manifolds of invariant shape representations [6, 18, 16]. Analogous ideas
have been applied to embedding functions in connection with level set based ap-
proaches to shape representation and segmentation [5, 7, 11]. In this connection,
we point out two properties of prior work that motivated the work presented in
this paper:

– shape representations may not conform to the representation of image seg-
mentations (contour spaces vs. regions or set of pixels after discretization);

– shape penalty functionals are non-convex (except for the less attractive case
of Gaussian shape statistics based on sampled contours);

– nonconvex level set based functionals have been used for image segmentation;
– adding a shape penalty functional compromises convexity of the overall ap-

proach.

1.2 Contribution, Organization

The approach introduced in this paper comprises

(i) separate convex modelling of variational approaches to segmentation and
shape priors, respectively, and

(ii) weak convex coupling of these models in terms of a convex, but possibly
indefinite, quadratic form

‖Ax−Bµ‖2, (1)

that measures similarity of segmentations x and shapes µ, respectively,
mapped to a common space by linear mappings A and B.

As a consequence, our corresponding approach avoids all deficiencies of previous
approaches, from the viewpoint of optimization.

Concerning (i) and segmentation, we use convex models of continuous cuts as
introduced in [4, 14, 13]. Concerning (i) and shape priors, we apply strengthened
local polytope convex relaxations of binary Markov Random Fields (MRFs) [17,
8, 15] whose structure and parameters are learned offline from a shape database
using large-scale convex optimization in a preprocessing step [10]. Concerning
(ii), we adopt the framework presented in [1] for coupling two proper convex and
lower semicontinuous functionals defined on different spaces.

The main objective of this paper is to introduce the general framework. There-
fore, we make no attempt to present a complete list of fully-fledged model com-
ponents, but rather confine ourselves to demonstrating the key aspect – coupling
of convex models – using preliminary versions of individual models. Specifically,
concerning segmentation, we merely employ binary continuous cuts [4] and de-
liberately do not elaborate the issue of feature extraction, having in mind that, as
discussed in the previous section, any image features computed in a preprocessing
step could be used. We apply two different MRF models as shape priors in order



to indicate the potential of this research direction: a naive MRF directly defined
on the pixel grid, and a hierarchically defined MRF that compares favourably
from the viewpoint of learning and automatically extracts a part-based proba-
bilistic representation of object shapes taken from different viewpoints. Under
strong noise levels simulating feature imperfections, we numerically demonstrate
promising synergistic performance of convex continuous cuts and convex varia-
tional shape priors.

(a) (b) (c) (d)

Fig. 1. Binary image segmentation: (a) noisy input, (b) only continuous cuts with low
regularization, (c) only continuous cuts with strong regularization, (d) convex coupling
of continuous cuts with low regularization and shape prior.

Our approach is general and can be extended in various directions. We indi-
cate this below as we go along.

2 Variational Models

2.1 Segmentation by Continuous Cuts

We adopt the approach [4] for globally optimal foreground-background separa-
tion by convex optimization.

Let Ω denote the uniform pixel grid of size |Ω| = N corresponding to the
domain [0, 1]2 ⊂ R2, and G ∈ R2N×N a discrete gradient matrix corresponding
to functions x : Ω → C, C = [0, 1]N . Given any similarity values s : Ω → RN
extracted from image data beforehand, that locally indicate fore- or background
in terms of its components si, i = 1, . . . , N , we look for a minimizer xmin ∈ C of
the functional

ETV(x) = αTV(x) + 〈x, s〉, (2)

where α > 0 is a regularization parameter, and the (discretized) total variation
measure as regularizer is given by

TV(x) =

N∑
i=1

‖(Gx)i‖ =

N∑
i=1

(
(Gx)2i,1 + (Gx)2i,2

)1/2
= σD(Gx) = sup

z

{
〈Gx, z〉 − δD(z) : z ∈ R2N

}
,

D = {z ∈ R2N : (zi,1)2 + (zi,2)2 ≤ 1, 1 ≤ i ≤ N}.



In [4] it is pointed out how these minimizers are related to finding an optimal
solution to the two-level Mumford-Shah energy functional by thresholding.

2.2 MRF Based Shape Priors

General Variational Formulation Shape priors consist of feature vectors y
of binary variables yi, 1 ≤ i ≤M and are defined statistically in terms of a joint
distribution

P (y) =
1

Z(θ)
exp (〈θ, φ(y)〉) (3)

Z(θ) =
∑

y∈{0,1}M
exp (〈θ, φ(y)〉) ,

where plausible choices corresponding to familiar shapes are assigned a higher
probability. The form of φ(y) is given by an associated undirected graph G
with vertices V = {1, . . . ,M} and edges E ⊆ {(i, j) : 1 ≤ i < j ≤ M}. Then
φ(y) = (y1, y2, . . . , yM , . . . , yiyj , . . .), (ij) ∈ E.

This corresponds to a minimally represented binary graphical model [17]
with strictly convex and essentially smooth log-partition function Z(θ), for any
choice of the model parameters θ ∈ R(|V |+|E|). These parameters are learned
from shape databases, as described in Section 3.
The most probable configuration ymax is given as solution to the problem

argmax
y

{
〈θ, φ(y)〉 : y ∈ {0, 1}M

}
.

This discrete combinatorial problem can be reformulated as linear problem on
the marginal polytope M(G) of the graph G[17]:

max
y

{
〈θ, φ(y)〉 : y ∈ {0, 1}M

}
= sup

µ
{〈θ, µ〉 : µ ∈M(G)} .

As the number of constraints that define M(G) grows exponentially with the
size of the graph, this problem is in general unfeasible. Thus one is forced to
relax the optimization set to the local polytope L(G) and to check carefully
the global optimum of this convex relaxation. Methods have been proposed to
tighten the standard local polytope relaxation by identifying and reintroducing
violated constraints of the original optimization set, see for example [15].

Whatever set of constraints one chooses, they can be written as Ncon affine
inequalities leading to the variational problem formulation

inf
µ

{
EMRF(µ) : Kµ ≤ k, K ∈ RNcon×(|V |+|E|), k ∈ RNcon

}
(4)

with

EMRF(µ) = −〈θ, µ〉.

3 Variational Shape Priors

We describe two specific instances of the general framework (3).



3.1 Ising Shape Prior

As a baseline, we investigate a direct application of the two dimensional Ising
Model: Every pixel is treated as binary feature, hence M = N in (3).

The set E of edges defining the model is determined by the model parame-
ters θ. Vanishing parameter values indicate missing edges. Parameter values are
determined using an approach proposed by Hoefling and Tibshirani [10]. The
corresponding algorithm maximizes the pseudo-likelihood of a set of training
samples T as a function of the parameter vector θ, constrained by a `1-norm
penalty ρ‖θ‖1. This penalty enforces sparse connectivity of the graph which is
desirable for various reasons: Learning dense graphs tends to overfit the training
data; dense graphs lead to a larger linear problem, and the local polytope relax-
ation tends to become weak. In our simulations about 3% of all possible edges
were actually existent (see Fig. 2a).

In the training data some pixels were either always black or always white.
As they do not contain any correlation information about other pixels they have
been removed from the learning procedure and their unary θ-weight has been
set to ±∞ by hand. The corresponding vertices have no connections to other
vertices.

3.2 Hierarchical Part Based Shape Prior

Besides the “flat” Ising Model discussed above, we also study a simple hierarchi-
cal model that can demonstrate the benefits of articulated object descriptions
and support non-local interactions without compromising sparsity. Shapes will
be decomposed into a torso and successive limbs. Limbs may depend on another
and on the torso: E.g. a lower arm is only expected if the upper arm is present
which, in turn, can only be present if the torso is there. Our model learns such
statistical relationships from data and penalizes implausible constellations as
follows.

First the set of training samples is divided into groups of characteristic views,
i.e. viewpoints of the object that yield similar shapes. Then to each group the
following procedure is applied: pixels in the image are combined into families
depending on the sample subsets in which they are active (=1) or not (=0). For
example, usually there will be a “torso” family of pixels that are active in every
sample of a specific view, and a “background” family of pixels that are always
black in that group.

Correspondingly, a hierarchical dependency graph of families is constructed
for every group: family i of pixels is considered dependent on family j if family
j is always active if i is active.

This relation is transitive, and the dependency graph only represents the
transitive reduction of this relation to keep the representation minimal. As to
be expected, in all these graphs the torso-families will be the root vertices.

Using the groups of characteristic views and their dependency graphs a joint
prior-graph with parameter vector θ is constructed in the following way: The
core of the graph is constituted by the torso-families of all characteristic view



(a) Plot of the adjacency matrix
of the graph G of the Ising prior
learned from a set of training sam-
ples. The nodes corresponding to
pixels of constant value in all train-
ing samples are not shown. Density:
approx. 3%.

(b) Illustration of the graph struc-
ture of the hierarchical part based
prior: The nodes of the fully con-
nected subgraph in the center rep-
resent the different possible torsos.

Fig. 2. Illustrating the two MRF based priors.

groups. They are fully connected amongst each other. Then to each torso node
the dependency graph of the associated characteristic view is appended (compare
Fig. 2b). The parameter vector is initialized with θi = 0, 1 ≤ i ≤ M, θij =
0, (ij) ∈ E. Then all pairs of torso nodes are considered: Plausibility dictates
that at most one torso can be present at a time. Thus the simultaneous presence
of two torsos has to be penalized. Therefore all θij where i and j are two different
torso nodes, are set to −p where p is the positive penalty parameter. Then
all dependency graphs of the torso nodes are processed: Whenever a node i is
dependent on a node j then θi will be decreased by p and θij will be increased
by p. Thus the unlikely case where yi is 1 while yj is 0 will be penalized by −p
relative to the other possible combinations.

We are aware that this preliminary version of our learning procedure is some-
what heuristic, but fully data driven and controlled just by a single user param-
eter p.

The grouping into pixel families and the introduction of a partial ordering
relation on the vertices capture some of the most striking features of the sample
data. A learning procedure that maximizes the likelihood would deduce similar
relations. Thus this step is only an approximation where the explicit forming of
families each corresponding to one vertex helps reducing the problem size and
simplifies the graph structure.

The clustering into characteristic views subsequently allows multiple vertices
to be associated with the same pixel. This simplifies differentiating “for what
reason” (i.e. which characteristic view) a pixel is white. Hence, no further edges



between different views are required which drastically reduces the number of
cycles in the graph and thus supports the applied polytope relaxations.

4 Coupling Convex Models

In this section an approach by Attouch et al.[1] is briefly introduced. We will
subsequently use its potential for combining TV-based segmentation with shape
prior knowledge in a variational framework.

4.1 Variational Approach

The approach [1] is based on the following functional jointly defined on two real
Hilbert spaces U and V:

E(x, µ) = f(x) + g(µ) +
λ

2
Q(x, µ), x ∈ U , µ ∈ V, (5)

where

U ,V : real Hilbert spaces,

f : U → R ∪ {+∞}
g : V → R ∪ {+∞} : closed convex proper functions,

Q : (x, µ) ∈ U × V → R+ : non-negative, quadratic form.

A minimizing pair of vectors (x, µ) is given by the limit of the series generated
by the following alternating proximal update steps:

xn+1 = argmin
ξ

{
f(ξ) + λ

2Q(ξ, µn) +
βf

2 ‖ξ − xn‖
2

: ξ ∈ U
}
,

µn+1 = argmin
η

{
g(η) + λ

2Q(xn+1, η) +
βg

2 ‖η − µn‖
2

: η ∈ V
}
.

(6)

Here λ ≥ 0 is a coupling constant that regulates the strength of the interaction.
βf > 0 and βg > 0 are damping constants that affect the convergence rate of the
algorithm but not convergence itself. Indeed, as we work in finite-dimensional
Euclidean spaces, [1, Thm. 2.1] immediately yields

Theorem 1. The sequence (xn, µn) generated by algorithm (6) converges to a
minimum (x∞, µ∞) of the functional E in (5). Moreover, f(xn) → f(x∞),
g(µn)→ g(µ∞), Q(xn, µn)→ Q(x∞, µ∞), ‖xn+1−xn‖ → 0 and ‖µn+1−µn‖ →
0 as n→∞.

We point out that this result is non-trivial because functionals f and g are
required to be convex and closed, but may be non-smooth, as in our applications.
As a consequence, heuristic alternating minimization without complementing
proper proximal point mappings, as is sometimes done in the field of computer
vision, might not yield a minimizing sequence.

From the viewpoint of modelling, the result is appealing as well, because
the quadratic form Q(·, ·) enables to couple and to compare points from “two
different worlds” in various mathematically sound ways in a common third space.



4.2 Shape Constrained Cuts

We present a preliminary application of the idea of coupling two convex func-
tionals to the image segmentation problem. We set U = RN ,V = R|V |+|E|, and
investigate the following joint energy:

E(x, µ) = λ1ETV(x) + λ2EMRF(µ) +
λ

2
‖x− Pµ‖2

+δC(x) + sup
ω

{
〈ω,Kµ〉 −

(
δRNcon

+
(ω) + 〈ω, k〉

)}
, (7)

where P is a linear mapping to be specified. Note that the terms in the second
line constrain solutions x ∈ U , µ ∈ V, to the optimization problem to the convex
sets x ∈ C and {µ : Kµ ≤ k}, respectively.

Comparison to Eq. (5) yields

f(x) = λ1ETV(x) + δC(x) (8)

g(µ) = λ2EMRF(µ) + sup
ω

{
〈ω,Kµ〉 −

(
δRNcon

+
(ω) + 〈ω, k〉

)}
(9)

Q(x, µ) = ‖x− Pµ‖2 . (10)

It is easy to verify that these choices satisfy the criteria that are required for the
sequence generated by (6) to converge.

In our example we chose the coupling space to which x and µ are mapped to
be identical with the space x lives in. Thus the matrix A in Eq. (1) is the identity
on RN . The matrix P in the coupling term maps the initially abstract feature
vector µ to the pixel space. The coupling then encourages the segmentation
proposal x to be close to the image represented by the features µ under this
map. In our setup µ contains not only rows for unary marginals of variables
yi but also pairwise marginals of yiyj corresponding to edges (ij) ⊂ E. These
pairwise marginals are not considered by the map.

In the Ising-Model prior P takes the marginals of the pixel features yi and
maps them to the appropriate pixel positions i in the image space. It is given by(

I|V |×|V | 0|V |×|E|
)

where In×n denotes the n-dimensional identity matrix and 0m×n a m×n matrix
with all entries being 0.

For the hierarchical part based prior, in each column of P that corresponds
to a unary marginal of a pixel family the entries of the corresponding pixels
are 1. The subspace of pairwise marginals is again ignored. Despite the unusual
generation of the parameter vector θ this model is still part of the family given
by Eq. (3).

5 Experiments and Discussion

5.1 Setup

Training Data Shape priors are learned from 2D views of 3D object models.
The training samples are views of the model from equidistant angles rotated



around its vertical axis. We chose a fixed window size that in applications may
cover different region sizes of a given image, corresponding to different levels of
a multiscale representation of the image.

In the first scenario the training data consist of 25×25 pixel views of a bunny
(see Fig. 3). To demonstrate the generality of our approach a second scenario
with 50× 50 pixel views of a horse was also studied.

Fig. 3. Some of the training samples of scenario 1: 25 × 25 pixel b/w views of a 3D-
model of a bunny.

In scenario 1 the Ising prior was trained with 50 equidistant views, the hier-
archical part based model with 100 equidistant views.

Input Data As input data new views with random angles between the training
views were taken and distorted to simulate noise, occlusion and clutter.

Gaussian noise of mean µnoise = 0 and some standard deviation σnoise followed
by projecting each pixel value onto the interval [0, 1] simulates feature imperfec-
tions. Occlusion by another object in the foreground was simulated by drawing
black circles on the input image. Clutter could be generated by other objects
in the image with texture similar to the object in question and was simulated
by drawing white circles on the input image. In the given setup the similarity
vector s was obtained by s = (1/2)N − u where (1/2)N denotes the vector of
length N with each entry being 1/2 and u : Ω → C is the distorted input image.

Parameter Values Unless otherwise noted in the simulations the following pa-
rameter settings have been used: TV regularization parameter α = 0.5 (eqn. (2)),
part based MRF implausibility penalty p = 100 (cf. Section 3.2), coupling con-
stants λ1 = λ2 = 1, λ = 10 (joint energy (7)), proximal damping parameters
βf = βg = 0.01 (algorithm (6)). By default the noise level was set to σnoise = 0.75.

The part based MRF penalty p is chosen to be on a higher energy scale than
the continuous cuts segmentation to favour segmentations of familiar shapes.
The coupling parameter λ was set to a high value to make the difference of x
and Pµ negligible. In plots that illustrate segmentation results only x is shown
but Pµ would not look much different.



5.2 Results

Figure 4 shows (a) several input images with distortions and each time the
segmentations given by (b) the uncoupled continuous cuts approach, (c) the
coupled Ising prior and (d) the coupled simple part based prior. Furthermore,
distortions due to noise, occlusion and clutter was examined, as described in the
previous section.

Clearly the coupling to a shape prior enhances the segmentation results: In
row 1 the ears of the bunny are lost to regular segmentation while they are still
restored by the coupled models. Similarly dealing with clutter and occlusion
works much better with prior.

(a) (b) (c) (d) (e)

Fig. 4. Modelling different kinds of distortion: Row 1: noise σnoise = 0.50, row 2: clutter,
row 3: occlusion. Segmentation results: (a) input, (b) only continuous cuts, (c) Ising
prior, (d) part based prior, (e) ground truth.

In Figure 5 it is shown how increased coupling strength forces the variables
x and µ to correspond to the same image. In our simulations it turned out that
most of the times a large coupling constant yields best results.

6 Conclusions and Further Work

We introduced a novel approach to variational image segmentation with shape
priors. Key properties are convexity of the joint energy functional and weak
coupling of convex models from different domains by mapping corresponding so-
lutions to a common space. Specifically, we combined state-of-the-art variational
approaches for TV-based image segmentation and for MRF-based learning of im-
age classes from examples. A convergent algorithm amenable to large-scale con-



(a) (b) (c) (d)

Fig. 5. Segmentation results of the coupled part based prior for various coupling
strengths λ: (a) ground truth and noise-distorted input. The upper row shows x, the
lower row Pµ: (b) λ = 0.1, (c) λ = 1, (d) λ = 10.

Fig. 6. Four pairs of noisy input, and part based prior supported segmentations of
different views. All views were processed with the same prior.

vex programming was presented. Numerical experiments demonstrated promis-
ing synergistic performance of convex continuous cuts and convex variational
shape priors under (simulated) noise, occlusion and clutter.

Our further work will further explore components of the coupling quadratic
form Q in (5). For example, linear mappings that represent collections of linear
shape features could be used to compare shapes after projecting them onto a
low-dimensional feature space. Another line of research concerns elaborating the
part-based variational shape prior so as to cope with several objects simultane-
ously and efficiently.
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12. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image
labeling with a novel family of total variation based regularizers. In: ICCV (2009)

13. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class
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