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Abstract. A significant class of variational models in connection with
matching general data structures and comparison of metric measure
spaces, lead to computationally intensive dense linear assignment and
mass transportation problems. To accelerate the computation we present
an extension of the auction algorithm that exploits the regularity of
the otherwise arbitrary cost function. The algorithm only takes into ac-
count a sparse subset of possible assignment pairs while still guarantee-
ing global optimality of the solution. These subsets are determined by
a multiscale approach together with a hierarchical consistency check in
order to solve problems at successively finer scales. While the theoretical
worst-case complexity is limited, the average-case complexity observed
for a variety of realistic experimental scenarios yields a significant gain
in computation time that increases with the problem size.

1 Overview and Contribution

Overview The linear assignment problem (LAP) and, more general, optimal
transport (OT) can be considered fundamental tools in computer vision and
mathematical image processing and their properties have been thoroughly ex-
amined [10, 12]. For optimal transport between smooth distributions on Rn with
convex cost functions, in particular the squared Euclidean distance, specialized
solution methods are available [5, 6]. However, this is a rather restricted class
of scenarios and the proposed ODE/PDE solutions are very involved numeri-
cally. For the LAP there are two classical algorithms: the Hungarian method
[7] and the auction algorithm [1], which is apt for parallelization [2] and can be
generalized to OT [4]. The evolution of the auction algorithms has also sparked
investigation of more general min-cost flow problems [3].

Despite all its merits as a metric on measures [8], optimal transport has the
disadvantage of being computationally considerably more expensive than simple
comparisons like the L1 distance. Thus, equivalent, yet more easily computable
metrics [11], thresholded cost functions [9] or tangent space approximations [13]
have been proposed.

The mentioned classical algorithms do not take into account any particular
structure of the cost function, whereas for virtually all practical problems, the
cost functions are far from arbitrary, but usually obey some regularity criterion.
Secondly, said algorithms become very slow for large, dense problems. However
many natural problems are a priori dense, i.e. any conceivable mass assignment
is theoretically possible (e.g. linear shape matching relaxations discussed in [8]).
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The regularity of the cost function can sometimes be exploited to devise
heuristics that aim at ruling out very unlikely (mass) assignments, to reduce
the problem size beforehand. Yet, in general it is very hard to come up with a
simple in-/exclusion rule, that can both rule out a substantial fraction of possible
assignments, so as to significantly reduce the problem size, and, at the same time
guarantee, that the global optimum of the full problem will not be lost.
Contribution In this paper we present a modification of the auction algorithm
that (a) can exploit any available heuristic for estimating a relevant sparse subset
of assignments. However, it will at the same time be (b) guaranteed to find
a globally optimal solution of the underlying dense problem by hierarchically
checking for violated constraints of the dual problem, which relies on regularity of
the cost function. In fact the hierarchical structure will lend itself to (c) provide
a reasonable sparsity estimate for the problem at hand by a multiscale approach.
Although some additional steps are required as compared to the standard auction
algorithms, we show that (d) the worst case complexity overhead of our proposed
method is limited. At the same time (e) we demonstrate with realistic examples,
that the ‘typical’ problem complexity for practical setups is significantly reduced.
In fact, the gain in computation time grows with problem size. This will enable
application of the auction algorithm to problem sizes that were unfeasible so
far and which due to their more general structure cannot be solved by PDE
methods.
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Fig. 1: (a) Illustration of experimental scenario “mesh”: mass distributions on
point clouds sampled from manifolds, cost function given by point distance in
underlying geodesic metric. (b) Ratio of runtimes of standard auction algorithm
and our proposed extension for various scenarios (see Sect. 6) and problem sizes
N . †: P2H, ⊕: P3H, ×: grid, ∇: mesh. P2H-P1, P2I and P2H-LB perform es-
sentially like P2H. N gives the number of points per point cloud or vertices per
grid. For N = 6000 (i.e. N2 = 3.6 · 107 potential assignment pairs) the observed
speedup ranges between 4.6 and 48, consistently increasing with problem size.

In Section 2 we will recall the definitions of LAP and OT. Section 3 reviews
the auction algorithm for the LAP and discusses the extension to OT. In Section
4 we present our proposed method. A comparative worst case complexity analysis
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is given in Sect. 5, before demonstrating with realistic experiments in Sect. 6 the
significant benefit of the proposed extensions. The paper concludes in Sect. 7.

2 Linear Assignment Problem and Optimal Transport

The Linear Assignment Problem For two finite sets X,Y and a cost func-
tion c : X × Y → R+ ∪ {∞} let N = {(x, y) ∈ X × Y : c(x, y) < ∞}. We call
N the set of neighbours and write N (x) = {y ∈ Y : (x, y) ∈ N} and similarly
N (y). We will refer to a subset S ⊂ X × Y as assignment if it satisfies

(a) S ⊆ N ,
(b) |{(x′, y′) ∈ S : y′ = y}| ≤ 1∀ y ∈ Y ,
(c) |{(x′, y′) ∈ S : x′ = x}| ≤ 1 ∀x ∈ X.

An assignment is called complete if for any x ∈ X there is a y ∈ Y such that
(x, y) ∈ S and vice versa.

The LAP is then readily stated as

min

 ∑
(x,y)∈S

c(x, y) : S is a complete assignment between X and Y

 . (1a)

The corresponding dual problem is

max

{∑
x

α(x) +
∑
y

β(y) : α(x) + β(y) ≤ c(x, y)

}
. (1b)

Note that for any fixed β the corresponding best choice of α is given by

α(x) = min
y
c(x, y)− β(y) . (2)

It is a well known result that for any optimal assignment S of the primal problem
(1a) and optimal (α, β) of the dual problem (1b) one finds

(x, y) ∈ S ⇒ α(x) + β(y) = c(x, y) . (3)

Optimal Transport For two finite sets X,Y let µX ∈ R
|X|, µY ∈ R

|Y | be
two vectors with non-negative entries and equal sum of entries

∑
x µX(x) =∑

y µY (y), indicating mass distributions on X,Y . Here, c : X ×Y → R∪{∞} is
a cost function, giving the cost to transport one unit of mass between elements
of the sets.

The optimal transport problem can then be written as

inf

{∑
x,y

c(x, y)µ(x, y) : µ ≥ 0,
∑
y

µ(x, y) = µX(x),
∑
x

µ(x, y) = µY (y)

}
(4a)
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where a µ is dubbed a coupling. The respective dual is given by

sup

{∑
x

α(x)µX(x) +
∑
y

β(y)µY (y) : α(x) + β(y) ≤ c(x, y)

}
. (4b)

Analogous to the primal-dual relation of the LAP (3) one finds for optimal
transport: for any optimal µ of primal (4a) and (α, β) of dual (4b) have

µ(x, y) > 0⇒ α(x) + β(y) = c(x, y) . (5)

3 The Auction Algorithm

The Auction Algorithm for the Assignment Problem We now recall the
description of the auction algorithm for the LAP from [4, Sect. 2]. Note that
we flipped the signs relative to the original presentation. Thus in the following
the comparison to an auction is no longer very intuitive (the lowest bid gets
accepted). However this makes the algorithm compatible with the usual notion
of optimal transport as presented in Sect. 2.

The main loop of the algorithm is divided into two phases: bidding and as-
signment. During the bidding phase elements of X locally determine their most
suitable assignment partner in Y and propose a corresponding dual variable
change. After that, during the assignment phase, for each y ∈ Y the best pro-
posed dual variable change is implemented. Different x do not interact during
the bidding phase and neither do different y during the assignment phase. Thus
both stages can be easily parallelized.

The state of the algorithm is represented by an assignment S and dual vari-
able β. The corresponding α is held implicitly via (2). The algorithm is initialized
with the empty assignment S = ∅ and some arbitrary β. A key property of the
auction algorithm is, that condition (3) does not hold strictly throughout the
iterations. Instead at any stage during the algorithm, for any (x, y) ∈ S the
weaker condition α(x) + β(y) ≥ c(x, y) + ε is satisfied, where ε is some positive
parameter. Positivity of ε is essential for convergence of the algorithm. However,
as long as ε < ∆c/|X| the resulting complete S is guaranteed to solve (1a),
where ∆c is the smallest difference between two non-equal values of c.

Bidding Phase For every x ∈ X that is unassigned under S:
Compute the corresponding value of α(x) as given by (2):

α(x) = min
y∈N (x)

c(x, y)− β(y) (6)

and find a minimizer y∗. Determine also the slack of the second ‘nearest’
constraint:

α′(x) = min
y∈N (x)\{y∗}

c(x, y)− β(y) (7)

Then element x ∈ X bids for element y∗ ∈ Y with value

bxy∗ = c(x, y∗)− α′(x)− ε . (8)
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Assignment Phase For each y ∈ Y let P (y) be the set of x ∈ X from which
y received a bid in the bidding phase of the iteration. If P (y) is nonempty,
decrease β(y) to the lowest bid

β(y) := min
x∈P (y)

bxy (9)

remove from the assignment S any pair (x, y) (if one exists), and add to S
the pair (x∗, y) where x∗ is some element in P (y) attaining the minimum in
(9). If P (y) is empty, β(y) is left unchanged.

Repeat the two stages until S is complete.
The Auction Algorithm for Optimal Transport In principle any optimal
transport problem with integer mass distributions can be translated into an LAP
by introducing a ‘mass-atom’ and splitting up each node x ∈ X, y ∈ Y into mul-
tiple copies, depending on how many atoms fit into µX(x), µY (y). By applying
suitable data structures this splitting can be made implicit and the auction algo-
rithm does not actually need to handle each mass atom separately. For example,
assignments S will be replaced by couplings µ. Also, some modifications in the
bidding process are advisable to prevent inefficient competition between atoms
originating from the same elements of X.

Such a reformulation is given in [4, Sect. 4], which we cannot repeat here, due
to space limitations. Instead we will briefly comment on the modifications which
are relevant for our proposed extensions to be discussed in the next section.

In the generalized algorithm, due to the splitting, the dual variable β need
not be constant ‘within’ every y. Thus, there is a dual variable β̃ for every pair
(x, y) and one variable β̃(♦, y) for mass atoms in y which have not yet received
a bid. A dual variable β can be obtained by

β(y) =

{
maxx′∈X : µ(x′,y)>0 β(x′, y) if

∑
x′ µ(x′, y) = µY (y)

β(♦, y) else
.

In the bidding phase, any x with
∑
y µ(x, y) < µX(x) can submit bids to multiple

y simultaneously. To determine the bid recipients, consider the set

Π(x) = {c(x, y)− β(x′, y) |y ∈ N (x), x′ 6= x and x′ ∈ N (y), µ(x′, y) > 0}
∪ {c(x, y)− β(♦, y) |y ∈ N (x),

∑
x′ µ(x′, y) < µY (y)} (10)

and assume that the entries are arranged in ascending order, i.e. we have

Π(x) =
{
c(x, y1)− β(x′1, y1), . . . , c(x, y|Π(x)|)− β(x′|Π(x)|, y|Π(x)|)

}
(11)

with c(x, yi)− β(x′i, yi) ≤ c(x, yi+1)− β(x′i+1, yi+1), for all i = 1, . . . , |Π(x)| − 1,
where by abuse of notation we allow x′i = ♦ for some i.

Values (6) and (7) are the first two entries of this list in the LAP case, for
determining the bids in a general OT problem, more than two entries might be
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relevant. Depending on the mass distributions µX , µY , one will determine an
integer m > 1 such that the equivalent of (7) is given by

α′(x) = c(x, ym)− β(x′m, ym) . (12)

For a complete description of the algorithm we refer the reader to [2].

4 A Hierarchical Multiscale Approach to Optimal
Transport

Motivation Obviously both algorithms will perform faster on sparse problems,
where the set of neighbours N is small. For example, the creation of the list
(10) will require much fewer queries. In practice however, many problems are
dense and a priori any assignment (x, y) could be possible. For some applications
one might be able to devise good heuristics to exclude certain pairs, which are
unlikely part of an optimal solution. But due to the combinatorial structure of
the underlying LAP it is in general hard to rule out a significant amount of
potential assignments and yet guarantee that the global optimum of the full
problem will be attained.

In most practical problems the sets X and Y are equipped with some addi-
tional structure and notion of closeness or similarity which is also represented
in the cost function. If x and y are close to x′ and y′ respectively, then we ex-
pect |c(x, y)−c(x′, y′)| to be somehow bounded. The details of this boundedness
condition (e.g. Lipschitz continuity) may depend on the problem at hand and
are not crucial for the applicability of the scheme to be discussed.

We will now present a sparse/dense hybrid variant of the auction algorithm,
that can be initialized with a good heuristic guess for the subset of relevant
assignment pairs and will benefit from the sparsity of this set and the additional
available structure of X,Y and c. Yet it will be guaranteed to find a globally
optimal assignment or coupling measure (Proposition 1). This hybrid variant
can then be used in a multiscale scheme, that successively generates optimal
couplings at finer and finer scales of the problem, using the results from the
coarser scales for efficiently solving the finer scales. A central concept of this
algorithm are hierarchical partitions, to be introduced next.
Hierarchical Partitions Let A1 ⊂ 2|X| be a partition of X, such that any two
elements x, x′ of one partition cell are considered to be ‘close’ in the aforemen-
tioned sense. Then let A2 be another (coarser) partition that is compatible with
A1 in the sense that any element a ∈ A2 can be written as the union of some cells
of A1. This coarsening can be repeated multiple times, each time ensuring that
elements in the same cell satisfy some (scale-adjusted) closeness criterion. The

resulting structure implies a directed tree graph with vertex set A =
⋃g−1
i=0 Ai

where A0 = {{x} : x ∈ X} is the set of singletons of X and g is the depth of the
hierarchy. For 0 ≤ i < g we say a′ ∈ Ai is a child of a ∈ Ai+1 (and a is parent of
a′) and write a′ ∈ ch(a), a = pa(a′) if a′ ⊂ a. We call this a hierarchical partition
of X.
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Analogous we let B be a hierarchical partition of Y and w.l.o.g. assume that
A and B have the same depth.

Now for a given dual variable α define the extension α̂ onto the whole hier-
archical partition by

α̂(a) = max
x∈a

α(x) =

{
α(x) if a = {x} ∈ A0 for some x

maxa′∈ch(a) α̂(a′) if a ∈ Ai for some i > 0
(13)

and analogous for β and β̂.
Similarly define an extension ĉ of c onto A× B via

ĉ(a, b) = min
x∈a,y∈b

c(x, y) . (14)

We now define an extension of the dual constraints of (1b,4b) to coarser
scales: we will refer to the following set of inequalities as dual constraints of
generation n:

α̂(a) + α̂(b) ≤ ĉ(a, b)∀ (a, b) ∈ An × Bn (15)

Obviously if the dual constraints of generation n hold for some extended α̂, β̂
and ĉ, then so will the constraints at all generations n′ < n. For n = 0 these
constraints are those of the original optimal transport problem. The requirement
that elements within the same partition cell of any generation should be close,
will ensure, that the dual constraints of generation n will not be a lot tighter
than those of generation n− 1.
A Sparse/Dense Hybrid Variant of the Auction Algorithm Consider
a feasible optimal transport problem between (X,µX) and (Y, µY ) with cost
function c. Let N̂ ⊂ X × Y such that (x, y) ∈ N̂ ⇒ c(x, y) < ∞. However
not necessarily c(x, y) < ∞ ⇒ (x, y) ∈ N̂ , i.e. we might start with a set of
neighbours which is smaller than the maximally possible one. We now give an
algorithm that will run on a given submaximal neighbour set N̂ , but detect
if some (x, y) ∈ N might have to be considered as part of an assignment and
extend N̂ accordingly if necessary. The bidding and assignment phases will work
just as in the standard auction algorithms, Sect. 3, with N̂ in place of N . But
there will be an additional consistency check step in between:

Consistency Check Phase Let α̂′ be the hierarchical extension of α′ as de-
fined in (7,12) and β̂ the hierarchical extension of β(·). Then start with

checking whether ĉ(a, b) − β̂(b) ≥ α̂′(a) for all a ∈ An, b ∈ Bn at some
generation n > 0.
If a checked inequality holds, then certainly c(x, y) − β(x′, y) ≥ α′(x) for
all x ∈ a, y ∈ b, x′ ∈ X and thus no y ∈ b could lead to a different bid for
x ∈ a if (x, y) ∈ N̂ during the bidding phase, since these potential candidates
would appear further behind in the ordered list Π(x), (11).

If a checked inequality ĉ(a, b)− β̂(b) ≥ α̂′(a) is found to be violated, check on

a finer level: ĉ(a′, b′) − β̂(b′) ≥ α̂′(a′) for a′ ∈ ch(a), b′ ∈ ch(b). Recursively
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continue this process until either all inequalities hold, or at generation 0 a
candidate c(x, y)−β(y) < α′(x) is found. If for such a candidate (x, y) 6∈ N̂ ,
then update N̂ := N̂ ∪ {(x, y)} and list x for rebidding.
After the consistency check, reevaluate the bidding phase for all listed x.

Proposition 1. The sparse/dense hybrid auction algorithm, initialized with some
non-maximal neighbourhood set N̂ , such that the problem constrained to N̂ is
still feasible, will converge to a globally optimal coupling µ under the same con-
ditions as the dense algorithm variant.

The proof is rather simple and thus for lack of space will be postponed to a more
thorough article on the subject. It hinges on the fact, that elements in the list
Π(x), Eq. (11), that appear beyond position m (which determines the value of
α′, see (12)), do not influence the process of the algorithm.

It should be noted, that this modification preserves the parallel structure of
the algorithm. Bidding and assignment work as before and the tree structure
of the successive hierarchical consistency checks allows for distribution of the
consistency evaluation onto multiple processors.
A Hierarchical Multiscale Approach to Optimal Transport The hybrid
variant will give a globally optimal coupling µ for valid initializations of N̂
and usually require far less queries than a näıve dense algorithm, if the initial
N̂ is chosen well and c is ‘sufficiently regular’ within the partition cells. For
specific problems one may devise good heuristics for such an initial guess. Now
we want to propose a generic scheme, that works in principle for any problem.
Its practicality will be evaluated in Sect. 6. Again, to save space, we can only so
much as give a sketch and must omit proofs for now.

For an optimal transport problem the coarsened problem at generation n is
defined by

inf
∑

(a,b)∈An×Bn

ĉ(a, b) µ̂(a, b) subject to

µ̂ ≥ 0,
∑
b

µ̂(a, b) =
∑
x∈a

µX(x),
∑
a

µ̂(a, b) =
∑
y∈b

µY (y) . (16)

Denote by Dn its optimal value.
Let ∆cn be an upper bound on the variation of c within one partition cell of

An×Bn, i.e. ĉ(a, b) ≤ c(x, y) ≤ ĉ(a, b) +∆cn for (a, b) ∈ An×Bn, (x, y) ∈ a× b.
In addition, any feasible µ̂ of the coarsened problem at some generation n does
induce feasible couplings on lower generations. Let µ̂′ be some feasible coupling
of generation n − 1 induced by an optimizer µ̂ of generation n, then one can
easily proof that

Dn ≤ Dn−1 ≤
∑

(a,b)∈An−1×Bn−1

ĉ(a, b) µ̂′(a, b) ≤ Dn +∆cn ·M ,

where M =
∑
x µX(x). Thus, solving the problem of generation n not only

provides a bounded interval for Dn−1 but also gives a feasible candidate for the
problem of generation n− 1 which is at most suboptimal by a margin ∆cn ·M .
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Since c is supposed to be regular in some sense and partitions are to be chosen
according to the closeness structure on X and Y , we can assume, that ∆cn is
usually small compared to the fluctuations of c throughout the whole coupling
space and that, thus, this bound is of actual practical value.

Also, it seems natural, to pick the support of µ̂′ as initial guess for N̂ , when
solving the refined problem with the hybrid algorithm. Obviously the restriction
to N̂ keeps the problem feasible, since it allows µ̂′.

Thus, in short, instead of directly solving the problem at generation 0, we
start at some coarser scale n, where the problem is small enough for direct dense
solution. Then we use the obtained minimizers to recursively solve the problem
at finer scales, each time producing an initial guess for the sparse support subset.

5 Complexity Analysis

We will first give the worst case complexity analysis of the auction algorithm for
the dense LAP with N = X × Y , |X| = |Y |. It can be considered a special case
of a class of min-cost flow algorithms presented in [3]. From [3, Lemma 5] we
can see that the number of bids submitted per source is O(|X| · C) where

C = max
x,y

c(x, y)−min
x,y

c(x, y) .

From the description in Sect. 3 we can see that cost of one bid for a given source
is of order O(|X |), i.e. scanning every possible assignment partner once. This
already incorporates the costs of bid acceptance at one sink, since at most one
bid is accepted per submitted bid. Hence the total worst case complexity of the
algorithm is O(|X|3 · C).

The extension to the sparse/dense hybrid variant requires several additional
steps, of which we must estimate the worst case costs. In a worst case scenario any
possible link will be added to N̂ , i.e. N̂ = X×Y , as in the full problem. Let p be
an upper bound on the number of elements in one partition cell at any generation
of the hierarchical partitions and let g be the number of generations. Then per
bid submission at most O(g) steps are required to compute the extension α̂′ and

at most O(p · g) per reception to update β̂. There will be of the order O(|B|)
hierarchical constraints to be tested per bid. Thus for one bid we get costs of
the order O(|X|+ g · (p+ 1) + |B|), resulting in a total worst case complexity of
O
(
|X|2 ·C ·(|X|+g·(p+1)+g·|B|)

)
. In the worst case, after the consistency phase,

the bidding phase needs to be rerun completely. However, this only amounts to
a constant factor 2 in the number of steps.

If the hierarchical partitions satisfy a relation like |Bn+1| ≤ |Bn| · q for some

q ∈]0, 1[ then |B| ≤
∑g−1
k=0 |X|qk < |X|/(1− q). For octrees one has for example

q = 1/8. Also, usually g, p � |X|, for example p ≈ |An+1|/|An| ≈ 1/q (= 8
for octrees) and g = O

(
log(|X|/|Ag−1|)/ log(1/q)

)
where Ag−1 would be the

coarsest generation of the hierarchical partition. Thus, the complexity of the
hybrid variant is usually dominated by the last term, which yields O

(
|X|3 · C ·

g/(1−q)
)
. Hence, the overhead scales with a constant factor (1−q)−1, depending
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on the hierarchy structure, and a term logarithmic in |X| which accounts for the
hierarchy resolution.

In principle the algorithm presented in [3] can also be used to solve the general
optimal transport problem, resulting in a similar complexity bound. The variant
referred to in Sect. 3 has a much higher worst case complexity but tends to
perform faster in practice due to increased resistance to a phenomenon dubbed
price haggling [3]. This means that the additional steps required by our hybrid
variant are of little significance in the worst case, yet are very useful in the
‘typical’ case, as demonstrated in the next section.

In practice runtime of the auction algorithms does exhibit a strong sensitivity
to C. This can be remedied by a method called ε-scaling [3] which can be shown
to replace the factor C by log(|X| · C) in the complexity estimates. Also, this
method is compatible with our presented additions.

6 Experiments

In the previous section we have considered the theoretical worst case complexity
of the auction algorithm and its hybrid extension. It is however very hard to
obtain a theoretical estimate for the ‘typical’ complexity. Thus, for demonstrating
the benefit of the augmented algorithm we need to rely on numerical experiments.
Implementation Details For evaluation we implemented the auction algo-
rithm in c++ with sparse data structures. The hybrid variant is based on the
same implementation, extended by the consistency phase, to obtain a meaning-
ful performance comparison. All mass distributions were picked to be integer and
the cost functions were truncated to a fine discrete grid of equidistant values.
To get practically relevant solving times, we used a very rudimentary form of
ε-scaling, in which the problem is repeatedly solved for decreasing values of ε
until global optimality can be guaranteed.
Performance Measures Computation time is naturally the measure of perfor-
mance that matters most in the end. To gain additional insight we also consider
the number of queries required to construct the list Π(x), (11), the additional
number of queries in the hierarchical consistency phase and the degree of sparsity
of N̂ in the hybrid method.
Experimental Scenarios We consider a variety of problem scenarios for eval-
uation: (a) P2H: point clouds, each uniformly sampled from the 2D unit square,
squared Euclidean distance as cost, (b) P3H: same as P2H, but points sampled
from 3D unit cube, (c) P2H-P1: same as P2H but with non-squared Euclidean
distance as cost, (d) P2I: same as P2H but with inhomogeneous sampling den-
sities and (e) grid: smooth 2D mass distribution, approximated by a discrete
grid, cost given by squared Euclidean distance, (f) mesh: mass distributions on
points sampled from the surface of a 3D mesh, geodesic distance (within mesh
surface) as cost function. In all experiments quadtrees (resp. octrees in 3D) were
used as hierarchical structures.

Last, we test an additional scenario, (g) P2H-LB: same as P2H, but instead
of computing ĉ by explicit minimization as in (14), we use lower bounds directly
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obtained from the quadtree structure. This demonstrates that the method can
also be applied to avoid explicit computation of all pairwise costs, which for
more complicated problems might be a costly task in itself.
Results A summary of the numerical results is given in Table 1. The hybrid
variant is significantly faster than the regular algorithm for all presented sce-
narios. This is due to a drastic decrease in the number of necessary constraint
violation queries. In particular one can see (Fig. 1) that the gain increases with
growing problem size. For N = 6000 (i.e. for 3.6 · 107 possible assignment pairs)
the ratio of runtimes ranges from 4.6 to 48. In the hybrid variant, for most sce-
narios at the finest scale less than one percent of potential assignments was added
to N̂ . Only for mesh it was slightly more (≈ 4%), owed to the more complicated
cost function. Also in the scenario P2D-LB the hybrid variant clearly outper-
forms the regular algorithm, while at the same time potentially saving explicit
assignment cost computation. Thus, for the presented scenarios the multiscale
scheme obviously works as intended.

7 Conclusion

As demonstrated in the last Section, the presented extension of the auction
algorithm clearly outperforms the regular variant on all presented test scenarios.
The observed gain in computation time grows with problem size. Compared to
PDE approaches for OT problems our method is much more flexible: X and
Y need not be regular grids on R

n and the cost can be chosen freely, as long
as a certain regularity is retained. Due to the very limited space we could only
give a very brief sketch on the theoretical properties of the algorithm, i.e. its
worst case complexity, the claim that it reliably finds the global optimum and
the relation between the different scales of the problem. Proofs for these claims
will be presented in a more detailed future publication. It also remains to be
examined more carefully how the hierarchical structure we proposed interacts
with the ε-scaling scheme or whether under further assumptions on the cost
function better theoretical complexity bounds can be obtained. Yet, already
at this stage of research the potential of the extension is evident in all tested
scenarios.
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