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Abstract. Discrete optimal transport solvers do not scale well on dense
large problems since they do not explicitly exploit the geometric struc-
ture of the cost function. In analogy to continuous optimal transport
we provide a framework to verify global optimality of a discrete trans-
port plan locally. This allows construction of a new sparse algorithm to
solve large dense problems by considering a sequence of sparse problems
instead. Any existing discrete solver can be used as internal black-box.
The case of noisy squared Euclidean distance is explicitly detailed. We
observe a significant reduction of run-time and memory requirements.

1 Introduction and Related Work

Optimal transport is a powerful and popular tool in image analysis, computer vi-
sion and statistics (e.g. [14,13,17]). However it is computationally more involved
as ‘simple’ similarity measures such as Lp-distances or the Kullback-Leibler di-
vergence. Consequently there is a necessity for efficient solvers.

Broadly speaking there are two classes of solvers: There are discrete combina-
torial algorithms such as the Hungarian method [11], the auction algorithm [4],
the network simplex [2] and more (e.g. [9]). They work for (almost) arbitrary cost
functions, and are typically numerically robust w.r.t. input data regularity. They
do not scale well for large, dense problems however, because the geometric struc-
ture of the cost function is not used. Alternatively, there are continuous solvers,
based on the elegant theory of the 2-Wasserstein space on Rn [10,6]. These need
not handle the full product space, but work directly with a transport map and
so can solve large problems more efficiently. But they only apply to a restricted
family of cost functions (most prominently squared Euclidean distance) and they
are numerically more subtle (e.g. involving the Jacobian of the transport map),
thus requiring some data regularity. The celebrated fluid-dynamics formulation
[3] is more flexible but at the cost of introducing a time dimension. Moreover,
there is a wide range of approximate methods: cost function thresholding [13],
tangent space approximation [17] and entropy smoothing [7] among others.

In [12] and [15] computation time is reduced via multi-scale schemes: first
solve a coarse approximate problem and then go to increasingly finer resolutions.
However, [12] is limited strictly to the case of squared Euclidean distance and [15]
only uses the cost function structure implicitly by keeping the problem sparse by
hierarchical consistency checks, requiring low-level adaptions of the algorithm.

So there still is a need for efficient discrete exact solvers, that are more flexible
than the W2-scenario (both in terms of cost function and measure regularity),
but which are still able to exploit geometric structure of the cost function.



2 Bernhard Schmitzer

An important feature of continuous solvers is that under suitable conditions
optimality of the transport can be verified by a local criterion: the transport
map is the gradient of a convex function. Whereas discrete solvers must check
optimality globally (e.g. all dual constraints must be verified).

Contribution and Organization. We briefly recall discrete optimal transport in
Sect. 2. Then a framework for the discrete setting is designed to mimic the
continuum feature of locally verifying global optimality. Locally here means that
we only need to look at a sparse subset of the full product space (Sect. 3). Based
on this we propose a new algorithm that globally solves the dense problem via
a sequence of sparse problems (Sect. 4). We show explicitly how the algorithm
can be applied to the (noisy) squared Euclidean distance on R

n (Sect. 5).
Key features of the proposed algorithm are: (a) It works with any discrete

OT solver as internal solver. (b) Due to sparsity the iterations are fast. (c) It
can benefit from smart initialization: when the initial coupling is already close to
being optimal, only few iterations are needed. (d) Consequently it can be used
in a multi-scale scheme, where we obtain good initial guesses for fine scales from
solutions on coarse scales. (e) This yields a significant decrease in run-time and
memory requirements compared to näıve solving of dense problem.

Numerical examples are given in Sect. 6. We report a speed-up of one order of
magnitude on state-of-the-art solver software, when simply used as black box and
two orders of magnitude for the Hungarian method with smart re-initialization.
This was observed both on smooth as well as locally concentrated measures, thus
indicating a wide range of practical applicability. Hence, the algorithm can be
used when the noisy cost function or irregular marginals cannot be handled by
continuous solvers but when näıve combinatorial algorithms are too slow.

2 Background on Optimal Transport

Notation. For a discrete finite set A we write |A| for its cardinality. Denote by
M(A) the space of non-negative measures over A. For a measure µ ∈M(A) its
support is defined by sptµ = {a ∈ A : µ(a) > 0}. The space of real functions
over A is identified with R

|A| where we index the components by elements of A.
For a map f : A→ B and a measure µ ∈ M(A) we denote by f]µ ∈ M(B) the
push-forward of µ given by f]µ(σ) = µ(f−1(σ)) for σ ⊂ B.

Discrete Optimal Transport. For two discrete finite sets X, Y and two non-
negative measures µ ∈ M(X), ν ∈ M(Y ) with equal total mass µ(X) = ν(Y )
the set of couplings is given by

Π(µ, ν) = {π∈M(X×Y ) : π({x}×Y ) = µ(x), π(X×{y}) = ν(y) ∀x, y} (2.1)

For a cost function c : X×Y → R∪{∞} the optimal transport problem consists
of finding the coupling with minimal total transport cost:

min
π∈Π(µ,ν)

C(π) with C(π) =
∑

(x,y)∈X×Y

c(x, y)π(x, y) (2.2)
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The problem is called feasible if its optimal value is finite. We call (2.2) the dense
or full problem. For some N ⊂ X × Y we also consider problem (2.2) subject to
the additional constraint sptπ ⊂ N , which we call the problem restricted to N .
We call N a neighbourhood. And we will call π a local optimizer w.r.t. N if it
solves the corresponding restricted problem.

The dual problem to (2.2) is given by

max
(α,β)∈(R|X|,R|Y |)

∑
x∈X

α(x)µ(x) +
∑
y∈Y

β(y) ν(y) (2.3a)

subject to α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ X × Y . (2.3b)

The relation between any primal and dual optimizers π and (α, β) of the
same transport problem is

π(x, y) > 0 ⇒ α(x) + β(y) = c(x, y) . (2.4)

Restricting the primal problem to N corresponds to only enforcing the dual
constraints (2.3b) on N . Analogously we speak of local dual optimizers (α, β)
w.r.t N . If (π, (α, β)) are local primal and dual optimizers and (α, β) satisfy
(2.3b) on X × Y , then one has found optimizers for the full problem.

One goal of this paper is to find suitable small subsets N such that the local
optimizers (π, (α, β)) w.r.t. N are also optimal for the full problem.

3 Optimal Transport and Short-Cuts

An Example for Intuition. Let µ, ν be absolutely continuous measures on R
n

with compact convex support, let c(x, y) = ‖x− y‖2. Then we know that there
is an optimal transport map which is the gradient of a convex function [16]. Let
T be any transport map, T]µ = ν, with induced coupling π = (id, T )]µ. For
simplicity let T be a homeomorphism. We want to verify optimality of T .

Let {Ui}i be an open covering of sptµ, then {Vi}i with Vi = T (Ui) is an open
covering of spt ν. Let µ|Ui , ν|Vi be the restrictions of the measure µ to Ui and ν
to Vi. Then T is a transport map between µ|Ui

and ν|Vi
for all i. If T is optimal

for each restricted problem on Ui × Vi then optimality for the whole problem
follows: when we know that T is the gradient of a convex function on each Ui,
by convexity of sptµ it follows that T is the gradient of a convex function on
sptµ and thus is the optimal transport map. Since the patches Ui can be made
arbitrarily small, optimality of a coupling π can be verified on an arbitrary small
open environment of sptπ on (Rn)2. This is illustrated in Fig. 1 (left).

The Monge property [5] is a simple discrete analogy in one dimension. In this
paper we strive to find a discrete equivalent for higher-dimensional problems. We
will return to this discussion for a brief comparison in Sect. 5. Now we introduce
short-cuts, a tool to temporarily remove constraints from the dual problem.

Definition 1 (Short-Cut). For a neighbourhood N ⊂ X × Y and a coupling
π with sptπ ⊂ N let ((x1, y1), . . . , (xn, yn)) be an ordered tuple of pairs in sptπ.
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Fig. 1. Left: In the continuous case it suffices to check whether T is optimal on each
of the sets Ui × Vi. Global optimality then follows. Right: As a discrete analogy we
introduce the concept of short-cuts. The dual constraint at (xB , yA) is implied by a
sequence (solid red line) of points in sptπ (blue) such that the ‘jumps’ lie in N (green).

We say ((x1, y1), . . . , (xn, yn)) is a short-cut between (xB , yA) ∈ (X × Y ) \N if
xB = xn, yA = y1, (xi+1, yi) ∈ N for i = 1, . . . , n− 1 and

c(xB , yA) = c(xn, y1) ≥ c(x2, y1) +

n−1∑
i=2

[c(xi+1, yi)− c(xi, yi)] . (3.1)

Proposition 1. For a set N ⊂ X × Y let (π, (α, β)) be a pair of local primal
and dual optimizers. Assume for a pair (xB , yA) /∈ N there exists a short-cut
within N . Then the dual constraint (2.3b) corresponding to (xB , yA) is satisfied.

Proof. Let ((x1, y1), . . . , (xn, yn)) be a short-cut. From (2.4) and (2.3b) restricted
to N we find α(xi+1)−α(xi) ≤ c(xi+1, yi)− c(xi, yi) for i = 1, . . . , n− 1 and by
summing up over i we obtain

α(xB) + β(yA) = α(xn) + β(y1) ≤ c(x2, y1) +

n−1∑
i=2

[c(xi+1, yi)− c(xi, yi)] .

Validity of the dual constraint corresponding to (xB , yA) follows from (3.1). ut

The concept of short-cuts is illustrated in Fig. 1 (right). Dual constraints for
which a short-cut exists need no longer be checked. So is there a clever way to
choose a small set N such that there is a short-cut for every (xB , yA) /∈ N? But
explicitly checking existence of short-cuts for each pair is far too expensive. We
now introduce a simple sufficient condition for existence.

Definition 2 (Shielding Condition). For a coupling π let yA ∈ Y , (x, y) ∈
sptπ and xB ∈ X. We say (x, y) shields yA from xB when

c(xB , yA)− c(xB , y) > c(x, yA)− c(x, y) . (3.2)

The shielding condition states that {(x, yA), (xB , y)} is (‘strictly’) c-cyclically
monotone [16]. It implies that suitable n-tuples in sptπ are in fact short-cuts.
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Proposition 2. For a given coupling π let ((x1, y1), . . . , (xn, yn)) be an ordered
tuple in sptπ. If (xi+1, yi) ∈ N for i = 1, . . . , n − 1 and (xi+1, yi+1) shields yi
from xn for i = 1, . . . , n− 2 then the tuple is a short-cut for (xn, y1).

Proof. We need to show that (3.1) holds. For i = 1, . . . , n−2 we have from (3.2)

c(xn, yi)− c(xn, yi+1) > c(xi+1, yi)− c(xi+1, yi+1) .

Summing up yields c(xn, y1) >
∑n−1
i=2 [c(xi, yi−1)− c(xi, yi)] + c(xn, yn−1). ut

We now introduce a sufficient condition for a set N such that short-cuts exist
for all (xB , yA) /∈ N and an algorithm for construction.

Definition 3 (Shielding Neighbourhood). For a given coupling π we say
that a neighbourhood N ⊂ X × Y , N ⊃ sptπ is shielding if for every yA ∈ Y
and any xB ∈ X at least one of the following is true:

(i) (xB , yA) ∈ N .
(ii) There exists some (x, y) ∈ sptπ with (x, yA) ∈ N such that (x, y) shields yA

from xB.

Algorithm 1 For a neighbourhood N let (π, (α, β)) be the corresponding local
optimizers. Assume N is shielding for π. We will construct a short-cut for a
given pair (xB , yA) /∈ N . Set n ← 1, y1 ← yA and choose some x1 such that
(x1, y1) ∈ sptπ. Then iterate:

while (xB , yn) /∈ N:

find (xn+1, yn+1) ∈ sptπ with (xn+1, yn) ∈ N such that

(xn+1, yn+1) shields yn from xB; n← n+ 1
end while

xn+1 ← xB; pick some yn+1 such that (xn+1, yn+1) ∈ sptπ; n← n+ 1

Proposition 3 (Existence of Short-Cuts). Under the stated requirements
Algorithm 1 terminates and produces a valid short-cut for any pair (xB , yA) /∈ N .

Proof. By virtue of Definition 3 one always finds either (xB , yn) ∈ N or there
exists a suitable shielding (xn+1, yn+1). Since the number of elements in sptπ
is finite, either the iteration must eventually terminate, or a cycle occurs. The
existence of cycles along which the shielding condition holds is ruled out by
(2.3b) and (2.4). Consequently the algorithm terminates. Then Proposition 2
provides that ((x1, y1), . . . , (xn, yn)) is a short-cut for (xB , yA). ut

Remark 1. Note that the strict inequality in (3.2) is merely required to guarantee
termination of Algorithm 1. Proposition 2 already follows from ≥ in (3.2).

Running Algorithm 1 is immensely more expensive than checking the corre-
sponding dual constraint. We rely on Proposition 3 which directly implies exis-
tence of short-cuts and thus validity of constraints outside of N . We summarize:
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Corollary 1 (Global Optimality from Local Optimality). Let (π, (α, β))
be local optimizers w.r.t. a neighbourhood N and let N be shielding for π. Then
(π, (α, β)) are optimizers of the dense problem.

Remark 2. A primal local optimizer π w.r.t. N suffices for Corollary 1 to hold
as shielding of N only depends on π. Results hold for any matching local dual
optimizers (α, β). Explicitly knowing dual variables allows for verifying local
optimality by checking the dual constraints.

4 A Sparse Algorithm.

Corollary 1 can be used to construct an efficient sparse algorithm for large OT
problems. The main ingredients of the algorithm are two maps:

(i) F : N 7→ π such that F (N) is locally optimal w.r.t. N . When N is sparse,
any discrete OT solver can quickly provide an answer. Given Remark 2 we
see that also purely primal solvers suffice.

(ii) G : π 7→ N such thatG(π) is shielding for π. It is important for efficiency that
G(π) is sparse. To design such a map one must use the geometric structure
of the cost function. In Sect. 5 we discuss the squared Euclidean distance.

Corollary 1 entails a ‘chicken and egg’-problem: For a given N1 let π1 = F (N1).
But if π1 is not globally optimal, then N1 cannot be shielding w.r.t. π1. Con-
versely, for some π1 let N2 = G(π1), but π1 will only be locally optimal w.r.t. N2

iff it is globally optimal. To find a configuration (N, π) such that both criteria
are satisfied simultaneously, one can iterate both maps.

Algorithm 2 For an initial N1 set k = 1 and run:
do:

πk+1 ← F (Nk); Nk+1 ← G(πk+1); k ← k + 1
until C(πk) = C(πk−1)

Proposition 4. For a feasible initial N1 Algorithm 2 terminates after a finite
number of steps with a globally optimal πk.

Proof. For k > 1 have Nk = G(πk) and πk+1 = F (Nk). So sptπk ⊂ Nk and
therefore πk is feasible when computing the optimal πk+1, restricted to Nk. It
follows C(πk+1) ≤ C(πk). One can see that after a finite number of iterations one
must find C(πk) = C(πk+1). Then πk is optimal w.r.t. Nk and by construction
Nk is a shielding w.r.t. πk. Therefore πk and πk+1 are globally optimal.

The usefulness of this algorithm will be demonstrated numerically in Sect. 6.
Important advantageous properties are:

(i) The solver F must only be applied to sparse problems, thus calling F will
be quite fast, if a suitable function G is known.

(ii) In fact we will demonstrate in next section how G can be designed for squared
Euclidean distance and extensions thereof, to quickly provide sparse sets N .

(iii) When a good initial coupling π1 is known, the algorithm will only need few
iterations. This is ideal for working in a multi-scale scheme, where an initial
guess for π1 or N1 can be generated from a coarser version of the problem.
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5 Squared Euclidean Distance

The Shielding Condition on R
n. So far everything has been formulated for gen-

eral cost functions. To run Algorithm 2 we need a function G that quickly gen-
erates a sparse shielding neighbourhood N for a given coupling π. For this we
must exploit the particular geometric structure of the cost function. We now
explicitly show how to do this for the squared Euclidean distance and noise.

For now assume X, Y ⊂ R
n and c(x, y) = ‖x − y‖2. Then the shielding

condition (3.2) for some triple yA ∈ Y , (x, y) ∈ sptπ, xB ∈ X is equivalent to

〈xB − x, y − yA〉 > 0 . (5.1)

This equation has a simple geometric interpretation: consider the hyperplane
through x, normal to y − yA. Then xB must lie on the side facing in direction
y − yA. So (x, y) shields yA from all potential xB beyond this hyperplane. This
provides us with a recipe for constructing shielding neighbourhoods:

N ← sptπ
for every yA ∈ Y :

find a set {(xi, yi)}i ⊂ sptπ such that the hyperplanes with

normals yi − yA through xi form a small polytope P ⊂ R
n.

add the pairs (xi, yA) to N for all i // (step-i )
for all x′ ∈ X ∩ P: add (x′, y1) to N. // (step-ii )

After (step-i) yA is shielded from all x′ outside of P by at least one (xi, yi), after
(step-ii) from all x′ ∈ X ∩ P . Now we discuss finding suitable polytopes P .

Regular Grids on R
2. Assume X and Y are regular orthogonal grids. For sim-

plicity assume n = 2, higher dimensions work analogously. From a coupling π
one can extract a map Tπ : Y → X with x = Tπ(y) ⇒ π(x, y) > 0.

For any yA ∈ Y let {y1, y2, y3, y4} be the 4-neighbourhood of yA on the grid
Y and let xi = Tπ(yi) for i = 1, . . . , 4. The normals of the faces of the resulting
polytope P are therefore {(1, 0), (0, 1), (−1, 0), (0,−1)} and P is a bounded rect-
angle, aligned with the grid. So during (step-i) of the construction of N for each
yA ∈ Y we add four elements (xi, yA), i = 1, . . . , 4 to N . During (step-ii) we add
(x′, yA) for all x′ ∈ X ∩P . Both the 4-neighbourhood of yA and elements of the
interior of P can be accessed in O(1) by using the grid structure on X and Y .

Provided some auxiliary data structures the scheme can be extended to more
general point clouds, this is however beyond the scope of this paper.

Complexity. The critical components for the complexity of Algorithm 2 are: com-
plexity characteristics of the internal solver F , sizes of neighbourhoods {Nk}k
and the number of outer iterations. The latter two depend on the initial choice
of N1. A rigorous analysis of this dependency is beyond the scope of this paper.
But beyond the empirically observed speed-up (Sect. 6) we can provide some
intuition on the algorithm’s behaviour: Given a spatially regular π (nearby x as-
sign mass to nearby y), the points xi are close and therefore P will have a small
area (in particular O(1) w.r.t. |X| and |Y |) and only few elements are added
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during (step-ii). So the resulting N will indeed be sparse, |N | = O(|Y |). This
scaling will be confirmed numerically for the multi-scale initialization scheme
that we chose (Sect. 6). We will even find

∑
k |Nk| = O(|X|), i.e. the sum of the

neighbourhood-sizes over all iterations of Algorithm 2, still scales better than
for the dense problem where N = X × Y . Since the internal solver complexity
is super-linear in |Nk|, this already implies a gain in performance.

Beyond Squared Euclidean Distance. Now consider a more general cost function:

c(x, y) = ‖x− y‖2 + ĉ(x, y) where we assume 0 ≤ ĉ(x, y) ≤ δ (5.2)

Such a cost function can describe a matching problem where we do not only
consider geometric proximity of points x and y, but also additional descriptors
attached to x and y (e.g. SIFT descriptors), whose comparison cost is given by
ĉ(x, y). Albeit useful from a modelling perspective, adding a term ĉ to the cost
function destroys the 2-Wasserstein space structure of the problem and thus
solvers based on the polar factorization theorem can no longer be applied.

It is possible however to extended our method to this scenario. Consider (3.2)
for this cost function. We find it is equivalent to

〈xB − x, y − yA〉 >
1

2
(ĉ(x, yA)− ĉ(x, y)− ĉ(xB , yA) + ĉ(xB , y)) . (5.3)

By using (5.2) we find the simpler sufficient condition 〈xB − x, y − yA〉 > δ. So
to construct a shielding neighbourhood for such a cost function we can still apply
the recipe outlined above, but all faces of P must be shifted outwards by δ to
account for the fluctuations in ĉ. For each xB within this enlarged polytope we
can test via (5.3) whether (xB , yA) must be included into N .

Application to the Continuous Problem. We now return to the discussion in
Sect. 3 and relate our new results to the continuous formulation. Given a trans-
port map T , locally optimal on all the patches Ui × Vi, let the tuple points
(x1 = xA, . . . , xn = xB), xi ∈ sptµ, be taken from a straight line between xA
and xB in monotone order and picked fine enough such that every two succes-
sive points xi, xi+1 lie in the same patch Ui. Let yi = T (xi). It then follows
that (xi+1, yi+1) is shielding yi from xn for i = 1, . . . , n − 2 (see (5.1) and
Remark 1) and consequently the tuple ((x1, y1), . . . , (xn, yn)) is a short-cut for
(xB , yA = y1). Therefore the transport map T is globally optimal.

We see that the shielding condition follows from local optimality along straight
lines, which explains why local optimality is still sufficient in 1-d discrete prob-
lems. In discrete higher-dimensional problems we cannot always jump along
straight lines between grid points and even small deviations may break the
shielding condition. Thus we must explicitly keep track of π in Sect. 3.

6 Numerical Experiments

Algorithms and Adaptive Initialization. We test our algorithm on four discrete
solvers: Our own implementation of the Hungarian method [11], the network
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Fig. 2. Run-times and speed-up. Problem size refers to |X| = |Y |. Left: Run-times
of näıve dense algorithms (solid lines) and Algorithm 2 with a multi-scale scheme
(dashed lines). For HU: HU-STD dotted, HU-INIT dashed. Right: Relative speed-up for
each algorithm. HU-STD dotted, HU-INIT solid. Dashed lines: results with noisy cost
function (Sect. 5) for HU and CPLEX. We observe a huge speed-up for HU, which is even
larger with adaptive initialization. But also the high-performance external solvers can
be accelerated by about one order of magnitude for large problems. The speed-up tends
to increase with problem size. HierAuc gives the run-times and speed-up reported in
[15] for the scenario grid. The auction algorithm does not seem to perform well on this
problem class and both the run-time and speed-up obtained by HU-INIT are better.

simplex [2] implementation of CPLEX [1] and the network simplex and cost
scaling [9] implementations of the LEMON library [8]. In the following we refer
to these four algorithms by the short-hands HU, CPLEX, LEMON-NS and LEMON-CS.

While we expect CPLEX and LEMON-∗ to be faster than HU, they can only
be used as black boxes, whereas we can manipulate our own implementation in
more detail. In particular we can choose the initialization. This can be exploited
by Algorithm 2: instead of solving each sparse problem (πk+1, (αk+1, βk+1)) ←
F (Nk) from scratch, we initialize the algorithm using the previous optimizers
(πk, (αk, βk)) as follows: We start with βk+1,init = βk and αk+1,init(x) = αk and
then reduce all αk+1,init entries where dual constraints on Nk are violated. We set
πk+1,init = πk and set all X-rows to zero where αk+1,init has been reduced. When
only few constraints were violated, we start with an ‘almost feasible’ coupling.

Test Data. As test data we used measures on regular grids in R
2 with full

support. Assuming full support is common for continuum solvers (e.g. [10]) and
can be ensured by adding a small constant measure. With the exception of
LEMON-CS we observed that the discrete solvers could handle very small constants
and thus distortion of the problem was negligible. We test grid sizes between
30×30 and 90×90, so the cardinalities of X and Y range between 900 and 8100
and the dimensions of the full coupling-spaces between 8.1 · 105 and 6.6 · 107.
The tested measures contained smoothly varying densities, strong Dirac-like local
concentrations and sharp discontinuities, thus posing challenging problems (see
Fig. 4 (right)) and representing a wide range of potential applications.

Multi-scale Solving. The purpose of Algorithm 2 is to accelerate solving large
problems by obtaining a smart initial guess for the optimal coupling and then
quickly solving a sequence of sparse problems, instead of trying to solve the
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Fig. 3. Solid lines: squared Euclidean distance, dashed lines: noisy cost function. Left:
Cumulative sparsity. The sum of all |Nk|/(|X| · |Y |) over iterations of Algorithm 2.
Right: The maximum of |Nk|/(|X| · |Y |) during iterations. The plots illustrate that the
neighbourhood construction (Sect. 5) works as intended. Comparison with O(|X|−1)
(black dashed line) shows that the number of neighbours per element is O(1).

dense problem directly. Similar to [12,15] we approximate the original problem
by a sequence of successively coarser problems. We use a hierarchical quad-tree
clustering over the grids X and Y . At any scale µ and ν are approximated by
the masses of the clusters and c by the distance between the cluster centers.
Then solve the problem from coarse to fine: each time we use the support of the
optimal coupling as initialization for N1 at the subsequent finer scale.

Run-times. We compare the run-times of the näıve algorithms with using them
as internal solvers in Algorithm 2 combined with the multi-scale scheme. For the
multi-scale timing we sum the times it takes to solve all levels, from coarse to
fine. The observed run-times and the speed-up are illustrated in Fig. 2. Reported
run-times were obtained on a single core of an Intel Core i5 processor at 3.2 GHz.

All solvers are sped up significantly, the ratio increasing with problem size. As
expected HU is much slower than the other algorithms. But it allows to demon-
strate the benefit of adaptive re-initialization over solving from scratch. Cur-
rently adaptive re-initialization for the external implementations is not available.
But even by using them as black boxes one gains about one order of magnitude.

Sparsity and Number of Iterations. The demonstrated speed-up relies on the
sparsity of Nk which also reduces the memory requirements of the algorithms.
Our numerical findings are presented in Fig. 3. The ratio |Nk|/|X × Y | is con-
sistently decreasing for all applied solvers and we observe |Nk| = O(|X| = |Y |),
i.e. the number of neighbours per element in X or Y , |Nk|/|X|, is constant
w.r.t. problem size. Even the sum of all |Nk| over the iterations of Algorithm 2
is O(|Y |). On the test data the median number of iterations per scale with the
multi-scale scheme was 4, the 95% quantile was 7 iterations, thus numerically
confirming the complexity discussion in Sect. 5 and point (iii) in Sect. 4.

Fig. 4 gives an impression of the structure of Nk during the execution of
Algorithm 2. We see that Nk locally adapts to the regularity of the assignment:
in regular areas only very few elements in Nk are needed per element of y ∈ Y .
In irregular regions the size of the neighbourhood increases, but this is only a
local effect. The regular regions are not affected by this.
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Fig. 4. Let Ny = Nk ∩ (X × {y}). Left: heat-map of |Ny| over Y after one iteration of
Algorithm 2 (k = 2). Green indicates |Ny| = 1, plain red |Ny|/|X| ≥ 1%. Right: Scatter-
plot of |Ny| vs. the Jacobian determinant of the average assignment map T : Y → X
(T (y) is averaged over X w.r.t. π(y, ·)). | detDT (y)| varies over 4 orders of magnitude,
including both strong compression and expansion. We see that the sparsity adapts
locally to the spatial regularity of the assignment. In non-expanding regions only few
neighbours per element are necessary.

Noise. We also briefly studied the application of Algorithm 2 to ‘noisy’ Euclidean
cost functions (Sect. 5). Uniform noise sampled from [0, 5] was added to the clean
cost function (the distance of neighbouring grid points is 1). This naturally
increased the cardinality of the neighbourhoods and consequently reduced the
speed-up by about a factor 0.6 (see Fig. 2). We still observeNk = O(|X|) however
(Fig. 3) and consequently observe better speed-up ratios at larger grid sizes.

Comparison with [15]. Fig. 2 compares the speed of the hierarchical auction
algorithm (HierAuc) and our new method. HierAuc is more flexible in terms of
cost functions. However, in Algorithm 2 validity of constraints outside of N is di-
rectly implied, without the need for hierarchical consistency checks. Therefore it
is not restricted to the auction algorithm as internal solver and no adaptions need
to be made within the solver. So it can be used with modern high-performance
software, to obtain lower run-times. Also, HU-INIT yields better speed-up ratios.

7 Conclusion

Dense optimal transport problems are omnipresent. But there is a lack of efficient
discrete solvers, exploiting the structure of the cost function.

Our paper provides a means of verifying global optimality of a coupling by
only looking at a sparse subset of the full product space. This can be seen as
discrete equivalent for well-known continuum results. We showed how to effi-
ciently construct such sets for the squared Euclidean distance and noise. Based
thereon we proposed an algorithm that solves dense problems via a sequence of
sparse problems. This algorithm can be combined with coarse-to-fine multi-scale
solution approaches. We demonstrated numerically the efficiency of the scheme
in terms of run-time and sparsity and gave some intuition for the complexity
behaviour. Our scheme thus allows the application of discrete solvers to larger
problems, where continuum solvers may not be applicable either, due to noisy
costs or irregular marginals with strongly fluctuating densities.
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Future work will comprise a more detailed complexity analysis, adaptive re-
initialization for other algorithms and studying of the shielding condition for
other types of cost functions and manifolds.
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