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1 Introduction

1.1 Reminders on Measure Theory

Reference: Ambrosio, Fusco, Pallara: Functions of Bounded Variation and Free Discontinuity
Problems, Chapters 1 & 2, [Ambrosio et al., 2000].

Definition 1.1 (σ-algebra). A collection E of subsets of a set X is called σ-algebra if

(i) ∅ ∈ E ; [A ∈ E ]⇒ [X \A ∈ E ];

(ii) for a sequence An ∈ E ⇒
⋃∞
n=0An ∈ E .

Comment: Closed under finite unions, intersections and countable intersections. A ∩ B = X \
((X \A) ∪ (X \B)).

Comment: Elements of E : ‘measurable sets’. Pair (X, E): ‘measure space’.

Example 1.2. Borel algebra: smallest σ algebra containing all open sets of a topological space.
Comment: Intersection of two σ-algebras is again σ-algebra. ‘smallest’ is well-defined.

Definition 1.3 (Positive measure and vector measure). For measure space (X, E) a function
µ : E 7→ [0,+∞] is called ‘positive measure’ if

(i) µ(∅) = 0;

(ii) for pairwise disjoint sequence An ∈ E ⇒ µ (
⋃∞
n=0An) =

∑∞
n=0 µ(An)

For measure space (X, E) and Rm, m ≥ 1, a function µ : E 7→ Rm is called ‘measure’ if µ satisfies
(i) and (ii) with absolute convergence.

Comment: Measures are vector space, measures are finite, positive measures may be infinite.

Example 1.4. Examples for measures:

1. counting measure: #(A) = |A| if A finite, +∞ else.

2. Dirac measure: δx(A) = 1 if x ∈ A, 0 else.

3. Lebesgue measure L([a, b]) = b− a for b ≥ a.

4. Scaled measures: positive measure µ, function f ∈ L1(µ), new measure ν = f · µ. ν(A)
def.
=∫

A f(x) dµ(x).
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5. Weak gradient of discontinuous function f , µ = Df .∫
Ω
ϕ(x) · dµ(x) = −

∫
Ω

divϕ(x) f(x) dx

for ϕ ∈ C1(Ω).

Definition 1.5 (Total variation). For measure µ on (X, E) the total variation |µ| of A ∈ E is

|µ|(A) = sup

{ ∞∑
n=0

|µ(An)|

∣∣∣∣∣An ∈ E , pairwise disjoint,
∞⋃
n=0

An = A

}
.

|µ| is finite, positive measure on (X, E).

Comment: Careful with nomenclature in image analysis.

Definition 1.6. A set N ⊂ X is µ-negligible if ∃ A ∈ E with N ⊂ A and µ(A) = 0. Two
functions f , g : X → Y are identical ‘µ-almost everywhere’ when {x ∈ X|f(x) 6= g(x)} is
µ-negligible.

Example 1.7. Null sets are Lebesgue-negligible sets.

Definition 1.8 (Measurable functions, push-forward). Let (X, E), (Y,F) be measurable spaces.
A function f : X → Y is ‘measurable’ if f−1(A) ∈ E for A ∈ F .
For measure µ on (X, E) the ‘push-forward’ of µ under f to (Y,F), we write f]µ, is defined by
f]µ(A) = µ(f−1(A)) for A ∈ F .
Change of variables formula: ∫

X
g(f(x)) dµ(x) =

∫
Y
g(y) df]µ(y)

Sketch: Varying densities.

Example 1.9 (Marginal). Let proji : X ×X → X, proji(x0, x1) = xi. Marginals of measure γ
on X ×X:

proj0 ]γ(A) = γ(A×X) , proj1 ]γ(A) = γ(X ×A) .

Sketch: Discuss pre-images of proji.

Definition 1.10 (Absolute continuity, singularity). Let µ be positive measure, ν measure on
measurable space (X, E). ν is ‘absolutely continuous’ w.r.t. µ, we write ν � µ, if [µ(A) = 0]⇒
[ν(A) = 0].
Sketch: Density � Lebesgue, density 6� density when support different, Dirac measures 6�
Lebesgue, mixed measures 6� density, mixed measures� mixed measures when Diracs coincide.
Positive measures µ, ν are ‘mutually singular’, we write µ ⊥ ν, if ∃ A ∈ E such that µ(A) = 0,
µ(X \A) = 0. For general measures replace µ, ν by |µ|, |ν|.

Definition 1.11 (σ-finite). A positive measure µ is called σ-finite if X =
⋃∞
n=0An for sequence

An ∈ E with µ(An) < +∞.

Example 1.12. Lebesgue measure is not finite but σ-finite.
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Theorem 1.13 (Radon–Nikodym, Lebesgue decomposition [Ambrosio et al., 2000, Theorem
1.28]). Let µ be σ-finite positive measure. ν general measure.
Radon–Nikodym: For ν � µ there is a function f ∈ L1(µ) such that ν = f · µ. f is unique
µ-almost everywhere. It is called ‘density of ν with respect to µ’ and usually denoted by f = dν

dµ .
Lebesgue decomposition: there exist unique measures νa, νs such that

ν = νa + νs, νa � µ, νs ⊥ µ .

Note: νa = f · µ for some f ∈ L1(µ).

Corollary 1.14. A real-valued measure ν can be decomposed into ν = ν+ − ν− with ν+, ν−
mutually singular positive measures.

Proof. Since ν � |ν| there exists f ∈ L1(|ν|) with ν = f · |ν|. Set A+ = f−1((0,+∞)),
A− = f−1((−∞, 0)) and set ν±(B) = |ν(B ∩A±)|.

Comment: f is only unique |ν|-almost everywhere.

1.2 Duality

References: Kurdila, Zabarankin: Convex functional analysis [Kurdila and Zabarankin, 2005].
For Hilbert spaces: Bauschke, Combettes: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces [Bauschke and Combettes, 2011]

Definition 1.15 (Dual space). For normed vector space (X, ‖ · ‖X) its topological dual space is
given by

X∗ = {y : X → R | y linear, continous, i.e. ∃C <∞, |y(x)| ≤ C ‖x‖X ∀x ∈ X} .

Norm on X∗:

‖y‖X∗ = sup {|y(x)||x ∈ X, ‖x‖X ≤ 1}

(X∗, ‖ · ‖X∗) is Banach space. For y(x) one often writes 〈y, x〉 or 〈y, x〉X∗,X .

Comment: Linear not necessarily continuous in infinite dimensions. Dual norm is operator norm.

Definition 1.16 (Weak convergence). A sequence xn inX converges weakly to x ∈ X if y(xn)→
y(x) for all y ∈ X∗. We write xn ⇀ x.

Definition 1.17 (Weak* convergence). A sequence yn in X∗ converges weakly to y ∈ X∗ if
yn(x)→ y(x) for all x ∈ X. We write yn

∗
⇀ y.

Application to measures:

Definition 1.18 (Radon measures). Let (X, d) be compact metric space, let E be Borel-σ-
algebra. A finite measure (positive or vector valued) is called a ‘Radon measure’. Write:

• M+(X): positive Radon measures,

• P(X) ⊂M+(X): Radon probability measures (total mass = 1),

• M(X)m: (vector valued) Radon measures.
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Theorem 1.19 (Regularity [Ambrosio et al., 2000, Proposition 1.43]). For positive Radon mea-
sures on (X, E) one has for A ∈ E

µ(A) = sup {µ(B) |B ∈ E , B ⊂ A, B compact} = inf {µ(B) |B ∈ E , A ⊂ B, B open} .

Theorem 1.20 (Duality [Ambrosio et al., 2000, Theorem 1.54]). Let (Ω, d) be compact metric
space. Let C(Ω)m be space of continuous functions from Ω to Rm, equipped with sup-norm.
The topological dual of C(Ω)m can be identified with the spaceM(Ω)m equipped with the total
variation norm ‖µ‖M

def.
= |µ|(Ω). Duality pairing for µ ∈M(Ω)m, f ∈ C(Ω)m:

µ(f) = 〈µ, f〉M,C =

∫
Ω
f(x) dµ(x)

Corollary 1.21. Two measures µ, ν ∈M(Ω)m with µ(f) = ν(f) for all f ∈ C(Ω)m coincide.

Theorem 1.22 (Banach–Alaoglu [Kurdila and Zabarankin, 2005, Theorem 2.4.4]). Let X be a
separable normed space. Any bounded sequence in X∗ has a weak∗ convergent subsequence.

Comment: Since C(Ω) is separable, any bounded sequence in M(Ω) has a weak∗ convergent
subsequence.

1.3 Monge formulation of optimal transport

Comment: Gaspard Monge: French mathematician and engineer, 18th century. Studied problem
of optimal allocation of resources to minimize transport cost.

Sketch: Bakeries and cafes

Example 1.23 (According to Villani). Every morning in Paris bread must be transported from
bakeries to cafes for consumption. Every bakery produces prescribed amount of bread, every
cafe orders prescribed amount. Assume: total amounts identical. Look for most economical way
to distribute bread.

Mathematical model:

• Ω ⊂ R2: area of Paris

• µ ∈ P(Ω): distribution of bakeries and produced amount of bread,

• ν ∈ P(Ω): distribution of cafes and consumed amount of bread

• Cost function c : Ω × Ω → R+. c(x, y) gives cost of transporting 1 unit of bread from
bakery at x to cafe at y.

• Describe transport by map T : Ω → Ω. Bakery at x will deliver bread to cafe at T (x).
Consistency condition: T]µ = ν.

Comment: Each cafe receives precisely ordered amount of bread.

• Total cost of transport map

CM (T ) =

∫
Ω
c(x, T (x)) dµ(x)

Comment: For bakery at location x pay c(x, T (x)) · µ(x). Sum (i.e. integrate) over all
bakeries.
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Definition 1.24. Monge optimal transport problem: find T that minimizes CM .

Problems:

• Do maps T with T]µ = ν exist? Can not split mass.

Sketch: Splitting of mass.

• Does minimal T exist? Non-linear, non-convex constraint and objective.

Comment: ⇒ problem remained unsolved for long time.

1.4 Kantorovich formulation of optimal transport

Comment: Leonid Kantorovich: Russian mathematician, 20th century. Founding father of linear
programming, proposed modern formulation of optimal transport. (Nobel prize in economics
1975.)
Do not describe transport by map T , but by positive measure π ∈M+(Ω× Ω).

Definition 1.25 (Coupling / Transport Plan). Let µ, ν ∈ P(Ω). Set of ‘couplings’ or ‘transport
plans’ Π(µ, ν) is given by

Π(µ, ν) =
{
π ∈ P(Ω× Ω)

∣∣ proj0 ]π = µ, proj1 ]π = ν
}
.

Example 1.26. Π(µ, ν) 6= ∅, contains at least product measure µ⊗ν ∈ Π(µ, ν). (µ⊗ν)(A×B) =
µ(A) · ν(B) for measurable A, B ⊂ Ω.

Definition 1.27. For compact metric space (Ω, d), µ, ν ∈ P(Ω), c ∈ C(Ω×Ω) the Kantorovich
optimal transport problem is given by

C(µ, ν) = inf

{∫
Ω×Ω

c(x, y) dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

}
(1)

Comment: Linear (continuous) objective, affine constraint set.

Comment: Language of measures covers finite dimensional and infinite dimensional case.

Theorem 1.28. Minimizers of (1) exist.

Proof. • Let πn be minimizing sequence. Since πn ∈ P(Ω×Ω) have ‖πn‖M = 1. By Banach-
Alaoglu (Theorem 1.22) ∃ converging subsequence. After extraction of subsequence have
convergent minimizing sequence πn

∗
⇀ π.

• Positivity: π is a positive measure. Otherwise find function φ ∈ C(Ω×Ω) with
∫

Ω×Ω φ dπ <
0 (use Corollary 1.14 and Theorem 1.19 for construction) which contradicts weak∗ conver-
gence.

• Unit mass: π(Ω× Ω) =
∫

Ω×Ω 1 dπ = limn→∞
∫

Ω×Ω 1 dπn = πn(Ω× Ω) = 1

• Marginal constraint: For every φ ∈ C(Ω)∫
Ω
φ dproj0 ]π =

∫
Ω×Ω

φ ◦ proj0 dπ

= lim
n→∞

∫
Ω×Ω

φ ◦ proj0 dπn = lim
n→∞

∫
Ω
φ dproj0 ]πn =

∫
Ω
φ dµ

So proj0 ]π = µ. Analogous: proj1 ]π = ν.
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• So: π ∈ Π(µ, ν).

• Since c ∈ C(Ω× Ω) and πn
∗
⇀ π have∫

Ω×Ω
c dπ = lim

n→∞

∫
Ω×Ω

c dπn .

Therefore, π is minimizer.

Comment: For proof under more general conditions see for instance [Villani, 2009, Chapter 4]
Proof two additional useful results to get some practice and intuition.

Proposition 1.29 (Restriction [Villani, 2009, Theorem 4.6]). Let µ, ν ∈ P(Ω), c ∈ C(Ω×Ω), let
π be optimizer for C(µ, ν). Let π̃ ∈M+(Ω× Ω), π̃(Ω× Ω) > 0, π̃(A) ≤ π(A) for all measurable
A ⊂ Ω × Ω. Set π′ = π̃

π̃(Ω×Ω) , π
′ ∈ P(Ω × Ω). Let µ′ = proj0 ]π′, ν ′ = proj1 ]π′. Then π′ is

minimal for C(µ′, ν ′).

Example 1.30. π̃(A)
def.
= π(A ∩ (Ω0 × Ω1)) for Ω0, Ω1 ⊂ Ω.

Sketch: Restriction to subset. More general restriction.

Proof. • Assume π′ is not optimal. Then there is a measure π′′ ∈ Π(µ′, ν ′) with strictly
better cost.

• Consider the measure π̂ = π − π̃ + π̃(Ω × Ω) · π′′. π̂ is a positive measure since π̃ ≤ π.
π̂ ∈ P(Ω× Ω) since π′′ ∈ P(Ω× Ω).

proj0 ]π̂ = proj0 ]π − proj0 ]π̃ + π̃(Ω× Ω) · proj0 ]π′′

= µ− π̃(Ω× Ω) ·
(
µ′ − µ′

)
= µ

So π̂ ∈ Π(µ, ν).

• π̂ has lower transport cost than π:∫
Ω×Ω

c dπ̂ =

∫
Ω×Ω

c dπ − π̃(Ω× Ω)

∫
Ω×Ω

c dπ′ + π̃(Ω× Ω)

∫
Ω×Ω

c dπ′′ <
∫

Ω×Ω
c dπ

• So π is not optimal which is a contradiction. Therefore π′ must be optimal.

Proposition 1.31 (Convexity [Villani, 2009, Theorem 4.8]). The function P(Ω)2 → R, (µ, ν) 7→
C(µ, ν) is convex.

Proof. • Let µ0, µ1, ν0, ν1 ∈ P(Ω). Let πi be corresponding minimizers in C(µi, νi), i ∈ {0, 1}.

• For λ ∈ (0, 1) set

µ̂ = (1− λ)µ0 + λµ1 , ν̂ = (1− λ) ν0 + λ ν1 , π̂ = (1− λ)π0 + λπ1 .

• π̂ ∈ Π(µ̂, ν̂) since

proj0 ]π̂ = (1− λ) proj0 ]π0 + λ proj0 ]π1 = (1− λ)µ0 + λµ1 = µ̂ .

• Convexity:

C(µ̂, ν̂) ≤
∫

Ω×Ω
c dπ̂ = (1− λ)

∫
Ω×Ω

c dπ0 + λ

∫
Ω×Ω

c dπ1 = (1− λ) C(µ0, ν0) + λ C(µ1, ν1)
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2 Kantorovich duality

2.1 More duality

Definition 2.1 (Topologically paired spaces). Two vector spaces X, X∗ with locally convex
Hausdorff topology are called topologically paired spaces if all continuous linear functionals on
one space can be identified with all elements of the other.

Example 2.2. Let (Ω, d) be a compact metric space. C(Ω) and M(Ω) with the sup-norm
topology and the weak-∗ topology are topologically paired spaces.
Any continuous linear functional on C(Ω) can be identified with an element in M(Ω) by con-
struction. If Φ is a weak-∗ continuous linear functional on M(Ω) it can be identified with the
continuous function ϕ : x 7→ Φ(δx).

Definition 2.3 (Fenchel–Legendre conjugates). Let X, X∗ be topologically paired spaces. Let
f : X → R ∪ {∞}. Its Fenchel–Legendre conjugate f∗ : X∗ → R ∪ {∞} is given by

f∗(y) = sup{〈y, x〉 − f(x)|x ∈ X} .

f∗ is convex, lsc on X∗. Likewise, for g : X∗ → R ∪ {∞} define conjugate g∗. If f, g convex, lsc
then f = f∗∗, g = g∗∗.

Comment: Lsc: lower semicontinuous, [xn → x]⇒ [f(x) ≤ lim infn→∞ f(xn)]

Theorem 2.4 (Fenchel–Rockafellar [Rockafellar, 1967]). Let (X,X∗), (Y, Y ∗) be two pairs of
topologically paired spaces. Let f : X → R ∪ {∞}, g : Y → R ∪ {∞}, f, g convex, A : X → Y
linear, continuous. Assume ∃ x ∈ X such that f finite at x, g finite and continuous at Ax. Then

inf {f(x) + g(Ax)|x ∈ X} = max {−f∗(−A∗z)− g∗(z)|z ∈ Y ∗} .

In particular a maximizer of the problem on the right exists. A∗ : Y ∗ → X∗ is adjoint of A
defined by 〈z,Ax〉Y ∗,Y = 〈A∗z, x〉X∗,X .

Comment: Can sometimes be used ‘in both directions’ to establish existence of both primal and
dual problem.

2.2 Dual Kantorovich problem

Theorem 2.5. Given the setting of Definition 1.27 one finds

C(µ, ν) = sup

{∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣α, β ∈ C(Ω), α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
(2)

Proof. • Problem (2) can be written as

C(µ, ν) = − inf
{
f(α, β) + g(A(α, β))

(
α, β) ∈ C(Ω)2

}
with

f : C(Ω)2 → R, (α, β) 7→ −
∫

Ω
α dµ−

∫
Ω
β dν

g : C(Ω2)→ R ∪ {∞}, ψ 7→

{
0 if ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

+∞ else.

A : C(Ω)2 → C(Ω2), [A(α, β)](x, y) = α(x) + β(y) .
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• f , g are convex, lsc. A is bounded, linear.

• Let (α, β) be two constant, finite functions with α(x) + β(y) < min{c(x′, y′)|(x′, y′) ∈ Ω2}.
Then f(α, β) <∞, g(A(α, β)) <∞ and g is continuous atA(α, β). Thus, with Theorem 2.4
(and Example 2.2)

C(µ, ν) = min
{
f∗(−A∗π) + g∗(π)

∣∣π ∈M(Ω2)
}
.

• One obtains:

f∗(−ρ,−σ) = sup

{
−
∫

Ω
α dρ−

∫
Ω
β dσ +

∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣(α, β) ∈ C(Ω)2

}
=

{
0 if ρ = µ, σ = ν ,

+∞ else.

(Reasoning similar than for positivity of limit π in proof of Theorem 1.28.)

g∗(π) = sup

{∫
Ω2

ψ dπ
∣∣∣∣ψ ∈ C(Ω2), ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
=

{∫
Ω2 c dπ if π ∈M+(Ω2),

+∞ else.

So far we have not yet proven existence of dual maximizers. For this we need some additional
arguments. We follow the presentation in [Santambrogio, 2015, Section 1.2].

Definition 2.6 (c-transform). For ψ ∈ C(Ω) define its c-transform ψc ∈ C(Ω) by

ψc(y) = inf {c(x, y)− ψ(x)|x ∈ Ω}

and its c-transform ψc ∈ C(Ω) by

ψc(x) = inf {c(x, y)− ψ(y)|y ∈ Ω}

A function ψ is called c-concave if it can be written as ψ = φc for some φ ∈ C(Ω). Analogously,
ψ is c-concave if it can be written as ψ = φc.

Comment: Setting β = αc (or α = βc) in (2) corresponds to optimization over β for fixed α
(and vice versa). In general alternating optimization of (2) in α and β does not yield an optimal
solution.
Lemma 2.7. The set of c-concave and c-concave functions are equicontinuous.

Proof. • Since c ∈ C(Ω×Ω) and (Ω, d) compact there is a continuous function ω : R+ → R+

with ω(0) = 0 such that |c(x, y)− c(x, y′)| ≤ ω(d(y, y′)).

• Let ψ = φc. Set φx : y 7→ c(x, y)−φ(x). For every x ∈ Ω have |φx(y)−φx(y′)| ≤ ω(d(y, y′)).
One finds

ψ(y) ≤ φx(y) ≤ φx(y′) + ω(d(y, y′))

for all x, y, y′ ∈ Ω. Taking the infimum over x one gets ψ(y) ≤ ψ(y′) + ω(d(y, y′)) and by
symmetry |ψ(y)− ψ(y′)| ≤ ω(d(y, y′)). This implies equicontinuity of c-concave functions.
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• Argument for φc analogous.

Theorem 2.8 (Arzelà-Ascoli [Rudin, 1986, Thm. 11.28]). If (Ω, d) is a compact metric space
and (fn)n is a sequence of uniformly bounded, equicontinuous functions in C(Ω) then (fn)n has
a uniformly converging subsequence.

Theorem 2.9 ([Santambrogio, 2015, Prop. 1.11]). Maximizers of (2) exist. For an optimal pair
(α, β) one finds β = αc, α = βc.

Proof. • For feasible (α, β) with finite score in (2) one can always replace β by αc and
subsequently α by (αc)c which are still feasible and do not decrease the functional value.
Hence, we may impose the additional constraint that (α, β) in (2) are (c, c)-concave and
their respective (c, c)-transforms.

• Replacing feasible (α, β) in (2) by

(x 7→ α(x)− C, y 7→ β(y) + C) with C = min
x′∈Ω

α(x′)

does not change the functional value or affect the constraints.

• Arguing as in Lemma 2.7 one finds for c-concave α with minx α(x) = 0 that α(x) ∈
[0, ω(diam Ω)] and for the corresponding β = αc that β(y) ∈ [min c− ω(diam Ω),max c].

• Hence, we may consider maximizing sequences of (2) that are uniformly bounded and
equicontinuous. By the Arzelà-Ascoli Theorem there exists a uniformly converging sub-
sequence. Since the objective (and the constraints) of (2) are upper semicontinuous (see
proof of Theorem 2.5), the limit must be a maximizer.

Corollary 2.10 (Primal-dual optimality condition). π solves (1) and (α, β) solve (2) if and only
if α(x) + β(y) = c(x, y) π-almost everywhere.

Proof. • ⇒: Assume π, (α, β) are primal and dual optimal then:∫
Ω×Ω

c(x, y) dπ(x, y) =

∫
Ω
α dµ+

∫
Ω
β dν =

∫
Ω×Ω

[α(x) + β(y)]dπ(x, y)

And α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ Ω2. Therefore α(x) + β(y) = c(x, y) π-a.e..

• ⇐: Assume α(x) + β(y) = c(x, y) π-a.e..∫
Ω
α dµ+

∫
Ω
β dν =

∫
Ω×Ω

[α(x) + β(y)]dπ(x, y) =

∫
Ω×Ω

c(x, y) dπ(x, y)

Remark 2.11 (Economic Interpretation of Kantorovich Duality). Bakeries and cafes hire a
third-party company to do the transportation and agree to split the transport cost. When
picking up bread at bakery x in the morning, the company charges an advance payment α(x)
per unit of bread for the transport. Upon delivery at a cafe at y it charges a final payment β(y)
per unit of bread from the cafe.
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The total payment to the company will be
∫

Ω α dµ+
∫

Ω β dν. It is left to the company to decide
which bread to deliver where. And they will want to minimize the total transport cost, i.e. to
find the global minimum of

∫
Ω×Ω c dπ.

But it can never charge more than c(x, y)−α(x) when dropping of bread from x at y, otherwise
the cafe y may complain and try to hire another company to get bread from bakery x at a lower
price. When every cafe receives bread from its ‘subjectively cheapest’ bakery (and similarly each
bakery delivers to its ‘subjectively cheapest’ cafe), the transport plan is said to be at equilibrium:
no party will attempt to change its partner in a local attempt to reduce its costs.
Kantorovich duality states that for the optimal transport model the global minimum and equi-
librium coincide.

A useful application of duality is the following result which is also the foundation for the numerical
approximation of the Kantorovich problem.

Proposition 2.12 (Stability of optimal plans). Let (µn)n, (νn)n be sequences in P(Ω) converging
weak∗ to µ and ν respectively. Let (πn)n be a corresponding sequence of optimal plans. Then
any cluster point of (πn)n is an optimal coupling for C(µ, ν).

Comment: (πn)n will always have cluster points due to Theorem 1.22.

Proof. • Let π be a cluster point of (πn)n. Without changing notation let (πn)n be a subse-
quence converging weak∗ to π. Then π ∈ Π(µ, ν) as for any φ ∈ C(Ω):∫

Ω
φd(proj0 ]π) =

∫
Ω×Ω

φ ◦ proj0 dπ = lim
n→∞

∫
Ω×Ω

φ ◦ proj0 dπn = lim
n→∞

∫
Ω
φ dµn =

∫
Ω
φ dµ

• Since π is feasible for C(µ, ν), for this converging subsequence:

C(µ, ν) ≤
∫

Ω×Ω
c dπ = lim

n→∞

∫
Ω×Ω

c dπn = lim
n→∞

C(µn, νn)

• Since this is true for any converging sub-sequence, get:

C(µ, ν) ≤ lim inf
n→∞

C(µn, νn)

• Let ε > 0.

• Let (αn, βn)n be a sequence of dual optimizers for C(µn, νn). Arguing as in the proof of
Theorem 2.9 we can extract a converging subsequence (αn, βn)n, converging uniformly to
some (α, β). Note that α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ Ω× Ω.

• There is some N ∈ N such that |α− αn| ≤ ε/2, |β − βn| ≤ ε/2 for all n ≥ N . So:∫
Ω
α dµn +

∫
Ω
β dνn ≥

∫
Ω
αn dµn +

∫
Ω
βn dνn − ε

• This is true for all converging subsequences (αn, βn)n. Taking the supremum over the limit
superior for all such subsequences, we get

C(µ, ν) ≥
∫

Ω
α dµ+

∫
Ω
β dν ≥ lim sup

n→∞
C(µ, ν)− ε

10



• Since this is true for any ε > 0 we find

C(µ, ν) ≥ lim sup
n→∞

C(µ, ν)

and thus π is optimal for C(µ, ν). (And C(µn, νn) converges.)

Comment: The proof can be extended to cover a sequence of changing cost functions (cn)n in
C(Ω× Ω), where cn is used for C(µn, νn) if (cn)n converges uniformly to a limit c ∈ C(Ω× Ω).

Comment: For treatment of duality in more general regularity setting see for instance [Villani,
2009, Chapter 5]. A preview of the required concepts is given in subsection below.

2.3 c-cyclical monotonicity and duality

The proof for Proposition 2.12 relies on the uniform convergence of the dual potentials (αn, βn).
This is not available in less regular settings and a fundamentally different argument has to be
used relying on the following property:

Definition 2.13 (c-cyclical monotonicity [Santambrogio, 2015, Def. 1.36]). Let c ∈ C(Ω × Ω).
A set Γ ⊂ Ω × Ω is c-cyclical monotone (short: c-CM) if for every n ∈ N and every tuple of
points ((x1, y1), . . . , (xn, yn)) ∈ Γn one has

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yi−1)

with convention y0 := yn.

Comment: Intuition behind this: assume bakery xi delivers to cafe yi, (xi, yi) ∈ Γ ⊂ Ω× Ω and
Γ is c-CM. Now assume bakery x1 decides to deliver to cafe yn instead, which then rejects bread
from bakery xn. This bakery has now reroute its bread to cafe yn−1 and so forth, until eventually
a cycle occurs and bakery x2 reroutes its bread to cafe y1. The fact that Γ is c-CM implies that
such a cyclic rerouting can never improve the transport cost.

Definition 2.14 (Support of measure). Let (Ω, d) be a compact metric space with its Borel
σ-algebra and µ ∈ M+(Ω). The support of µ, denoted sptµ is the smallest closed set A ⊂ Ω
such that µ(A) = µ(Ω). For x ∈ sptµ one has µ(Br(x)) > 0 for any r > 0.

From the above comment we deduce intuitively: if π is optimal transport plan one must have
sptπ is c-CM. Otherwise a cyclic rerouting of mass, as above, could yield an improved plan.
Formal statement:

Proposition 2.15 ([Santambrogio, 2015, Thm. 1.38]). If π is an optimal transport plan for
C(µ, ν) then sptπ is c-CM.

Proof. • Assume sptπ is not c-CM. Then there is n ∈ N, and a tuple ((x1, y1), . . . , (xn, yn)) ∈
(sptπ)n with

n∑
i=1

c(xi, yi)−
n∑
i=1

c(xi, yi−1) = ε > 0 .

(and all xi, yi different).
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• Select small open environments Ui ⊂ Ω of xi, and Vi ⊂ Ω of yi such that

|c(x, y)− c(x′, y′)| ≤ ε
4n for all x, x′ ∈ Ui, y, y′ ∈ Vj

for all i, j ∈ {1, . . . , n}. (and Ui, Vi pairwise disjoint).

• Set δ = mini π(Ui × Vi) > 0 since (xi, yi) ∈ sptπ.

• Set:

πi =
πx(Ui × Vi)
π(Ui × Vi)

, µi = proj0 ]πi, νi = proj1 ]πi, π̂i = µi ⊗ νi−1 .

• Let:

π̂ = π − δ
n∑
i=1

πi + δ
n∑
i=1

π̂i

Note: π̂ ≥ 0, π̂ ∈ Π(µ, ν).

• New cost:

∫
c dπ̂ =

∫
c dπ + δ

n∑
i=1


∫
c dπ̂i︸ ︷︷ ︸

≤c(xi,yi−1)+
ε

4n

−
∫
c dπi︸ ︷︷ ︸

≥c(xi,yi)−
ε

4n



≤
∫
c dπ + δ


n∑
i=1

(c(xi, yi−1)− c(xi, yi))︸ ︷︷ ︸
=−ε

+ ε
2


=

∫
c dπ − δ ε

2 .

So π cannot be optimal.

The converse implication is much less clear: if sptπ is c-CM, is π an optimal transport plan?
While there are no cyclical rearrangements, possibly there is a more complicated way to improve
the plan. With duality we can show that c-CM is indeed sufficient for optimality.

Proposition 2.16 ([Santambrogio, 2015, Thm. 1.37]). Let c ∈ C(Ω × Ω), Γ ⊂ Ω2, Γ 6= ∅, Γ is
c-CM. Then there exists a c-concave function α ∈ C(Ω) such that

α(x) + αc(y) = c(x, y) for all (x, y) ∈ Γ .

For proof use small auxiliary Lemma.

Lemma 2.17. Let c ∈ C(Ω × Ω), β : Ω → R ∪ {−∞}, β bounded from above, β not identical
−∞. Set

α(x) := inf{c(x, y)− β(y) | y ∈ Ω}.

Then α ∈ C(Ω), (αc)c = α which also implies that α is c-concave.
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Proof of Proposition 2.16. • β is bounded from above, and finite at least at one point: fam-
ily of functions (x 7→ c(x, y) − β(y))y∈Ω:β(y)>−∞ is non-empty and uniformly bounded
from below. ⇒ α is pointwise infimum over non-empty family of equicontinuous functions
uniformly bounded from below. ⇒ α ∈ C(Ω).

• Now:

α(x) = inf
y
{c(x, y)− β(y)}

αc(y′) = inf
x

sup
y
{c(x, y′)− c(x, y) + β(y)}

(αc)c(x′) = inf
y′

sup
x

inf
y
{c(x′, y′)− c(x, y′) + c(x, y)− β(y)}

• By setting x = x′ in supremum get: (αc)c(x′) ≥ α(x′).

• By setting y = y′ in inner infimum get: (αc)c(x′) ≤ α(x′).

Proof. • Pick (x1, y1) ∈ Γ. For y ∈ Ω set

β(y) = sup

{
n∑
i=1

c(xi, yi)−
n∑
i=2

c(xi, yi+1)

∣∣∣∣∣n ∈ N, (xi, yi) ∈ Γ for i = 1, . . . , n, yn = y

}

• For y /∈ proj1(Γ) find β(y) = −∞ (supremum over empty set).

• For y ∈ proj1(Γ) use c-CM of Γ:

β(y) = sup


n∑
i=1

c(xi, yi)−
n∑
i=2

c(xi, yi+1)︸ ︷︷ ︸
≤c(x1,yn)

∣∣∣∣∣∣∣∣∣∣
n ∈ N, (xi, yi) ∈ Γ for i = 1, . . . , n, yn = y


So β is bounded from above.

• For y = y1 get by setting n = 1:

β(y1) ≥ c(x1, y1)

So β is not identical to −∞.

• Now for x ∈ Ω set

α(x) = inf {c(x, y)− β(y)|y ∈ Ω} .

By Lemma 2.17: α ∈ C(Ω), (αc)c = α.

• Now let (x, y) ∈ Γ. We need: α(x) + αc(y) = c(x, y). Since αc ≥ β and α(x) + αc(y) ≤
c(x, y) a sufficient condition is α(x) + β(y) ≥ c(x, y).
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• For every ε > 0 there is some ŷ such that

α(x) ≥ c(x, ŷ)− β(ŷ)− ε .

And since α(x) ∈ R have ŷ ∈ proj1(Γ).

• For β get recursive formula:

β(y) = sup {c(x, y)− c(x, ŷ) + β(ŷ)|(x, y) ∈ Γ, ŷ ∈ proj1(Γ)}

So:

β(y) ≥ c(x, y)− c(x, ŷ) + β(ŷ) .

• Combining lower bounds for α(x) and β(y) we get:

α(x) + β(y) ≥ c(x, ŷ)− β(ŷ)− ε+ c(x, y)− c(x, ŷ) + β(ŷ) = c(x, y)− ε .

Since this is true for any ε > 0 it is true for ε = 0.

Application: sufficient condition for optimality of transport plans:

Corollary 2.18. If π ∈ Π(µ, ν) and sptπ is c-CM, then π is an optimal coupling for C(µ, ν).

Proof. Use (α, β = αc) for function α provided by Proposition 2.16 as dual feasible candidates.

Another application: alternative proof for stability result Proposition 2.12. Need a few ingredi-
ents.

Definition 2.19. For metric space (Ω, d) define Hausdorff distance for subsets A, B of Ω:

dH(A,B) = max{max{d(x,B) |x ∈ A},max{d(A, y) | y ∈ B}}

Theorem 2.20 (Blaschke [Ambrosio and Tilli, 2004, Thm. 4.4.15]). For a compact metric space
(Ω, d) the set of compact subsets of Ω with the distance dH is a compact metric space.

Lemma 2.21. Let An be a sequence of compact subsets of Ω, A ⊂ Ω compact, let An → A
in the Hausdorff distance. Then for every x ∈ A there is a sequence (xn)n, xn ∈ An such that
xn → x.

Proof. • Let x ∈ A. For any ε > 0 there is some N such that dH(A,An) ≤ ε for n ≥ N .
Then:

d(x,An) ≤ dH(A,An) ≤ ε

So there is some xn ∈ An such that d(x, xn) ≤ ε.

Lemma 2.22. Compact metric space (Ω, d). Hausdorff convergent sequence of compact subsets
An to A. Weak∗ convergent sequence of measures (µn)n in P(Ω) to µ. sptµn ⊂ An.
Then sptµ ⊂ A.
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Proof. • Consider sequence of functions fn ∈ C(Ω), fn : x 7→ d(x,An) and set f : x 7→
d(x,A). Then fn → f uniformly (with Lemma 2.21).

• So for every ε > 0 there is some N <∞ such that |fn − f | ≤ ε for n ≥ N .

• Then: ∫
fn dµn = 0∫

f dµ = lim
n→∞

∫
f dµn ≤ lim

n→∞

∫
fn dµn + ε = ε

Alternative proof for Proposition 2.12. • As in first proof: let (πn)n be sequence of optimiz-
ers. For any converging subsequence the limit π is in Π(µ, ν).

• With Theorem 2.20 the sequence (sptπn)n has a convergent subsequence in the Hausdorff
metric. Denote limit set by Γ.

• By Lemma 2.22 have sptπ ⊂ Γ for any cluster point π of (πn)n.

• Every sptπn is c-CM by Proposition 2.15. Therefore, so is Γ. Indeed: let n ∈ N,
((x1, y1), . . . , (xn, yn)) ∈ Γn. For i = 1, . . . , n let ((xi,k, yi,k))k be sequence with (xi,k, yi,k) ∈
sptπk, with (xi,k, yi,k)→ (xi, yi). For every k find by c-CM of sptπk:

n∑
i=1

c(xi,k, yi,k) ≤
n∑
i=1

c(xi,k, yi−1,k)

Hence this is also true in limit.

• So sptπ ⊂ Γ is c-CM. With Corollary 2.18 π is optimal for C(µ, ν).

2.4 Solution to the Monge problem

We now consider a special case for which the Monge problem has a solution. Duality will be an
important ingredient in the proof.
First we briefly discuss that the Kantorovich formulation of optimal transport, Definition 1.27,
can be interpreted as a relaxation of the Monge formulation, Definition 1.24.

Proposition 2.23 (Kantorovich is a relaxation of the Monge problem). Assume T : Ω → Ω is
a feasible transport map for the Monge problem between µ and ν, Definition 1.24. In particular
T]µ = ν.
Let

(id, T ) : Ω→ Ω× Ω, x 7→ (x, T (x)) .

Then π = (id, T )]µ ∈ Π(µ, ν) and∫
Ω×Ω

c dπ =

∫
Ω
c(x, T (x)) dµ(x) .
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Proof. • Clearly π ∈ P(Ω× Ω).

• proj0 ◦ T = id. Hence

proj0 ]π = proj0 ]T]µ = µ .

• Similarly proj1 ◦ T = T . Hence

proj1 ]π = proj1 ]T]µ = T]µ = ν .

• Equality of cost follows from change of variables under (id, T ).

This implies in particular that C(µ, ν) ≤ CM (µ, ν) since every feasible Monge map induces a
Kantorovich coupling of equal cost.
The converse inequality is in general not true but we will now prove it for a special case.

Theorem 2.24 (Solution to the Monge problem). Let Ω ⊂ Rd be compact, let the cost function
c be given by c(x, y) = h(x − y) for a strictly convex function h : Rd → R. Let µ be Lebesgue-
absolutely continuous and let ∂Ω be µ-negligible.
Then the optimal transport plan π is supported on the graph of a transport map T : Ω→ Ω.

Proof. • h is convex and finite. Hence it is continuous and locally Lipschitz. Therefore, c is
continuous and Lipschitz (since Ω is compact).

• Therefore Theorem 1.28 and Theorem 2.9 apply and provide existence of primal and dual
optimizers π and (α, β).

• From the proof of Theorem 2.9 know: β = αc, α = βc. Analogous to Lemma 2.7 this
implies that α and β are Lipschitz.

• By Rademacher’s theorem (see e.g. [Ziemer, 1989, Theorem 2.2.1]) α is Lebesgue-almost
everywhere differentiable in int Ω. And consequently µ-almost everywhere on Ω (since ∂Ω
is µ-negligible).

• From Corollary 2.10: α(x)+β(y) = c(x, y) π-almost everywhere. For (x0, y0) with α(x0)+
β(y0) = c(x0, y0) we find

x 7→ c(x, y0)− α(x)

is minimal at x0 (since β(y0) = infx{c(x, y0)− α(x)} = c(x0, y0)− α(x0)). If α is differen-
tiable at x0 (which it is µ-a.e., i.e. for (x, y) π-a.e.), then ∇α(x0) ∈ ∂h(x0 − y0).

• For a strictly convex function ∂h is ‘invertible’. That is, for every v ∈ Rd there is a unique
w ∈ Rd such that v ∈ ∂h(w). We denote this map by ∂h−1 and find

x0 − y0 = ∂h−1(∇α(x0)) .

• This relation is still true π-almost everywhere. Set T (x) = x − ∂h−1(∇α(x)). Then
y = T (x) π-almost everywhere.
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• Equality of cost:∫
Ω×Ω

c(x, y) dπ(x, y) =

∫
Ω×Ω

c(x, T (x)) dπ(x, y) =

∫
Ω
c(x, T (x)) dµ(x)

• Push-forward condition:∫
Ω
φ(y) dT]µ(y) =

∫
Ω
φ(T (x)) dµ(x) =

∫
Ω×Ω

φ(T (x)) dπ(x, y)

=

∫
Ω×Ω

φ(y) dπ(x, y) =

∫
Ω
φ(y) dν(y)

Example 2.25 (Quadratic case: c(x, y) = 1
2‖x − y‖2). This corresponds to h(x) = 1

2‖x‖
2.

Consequently, ∂h(x) = {x} and ∂h−1(x) = x. Moreover since α = βc:

α(x) = inf
{

1
2‖x− y‖

2 − β(y)
∣∣y ∈ Ω

}
= 1

2‖x|
2 + inf

{
−〈x, y〉+ 1

2‖y‖
2 − β(y)

∣∣y ∈ Ω
}

=1
2‖x‖

2 − sup
{
〈x, y〉 − g(y)

∣∣∣y ∈ Rd
}

︸ ︷︷ ︸
:=φ(x) : convex

Therefore,

T (x) = x−∇α(x) = x− (x−∇φ(x)) = ∇φ(x) .

So T is almost everywhere the gradient of a convex function. This is part of the famous polar
factorization theorem by [Brenier, 1991].

3 Wasserstein spaces

3.1 Definition and basic properties

Definition 3.1 (Wasserstein distance). Let (Ω, d) be a compact metric space. For p ∈ [1,∞)
let Wp : P(Ω)× P(Ω)→ R,

Wp(µ, ν) =

(
inf

{∫
Ω×Ω

d(x, y)p dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

})1/p

Comment: On non-compact spaces one usually restricts the Wasserstein space to measures with
finite moment of order p, i.e.,

∫
Ω d(x, x0)p dµ < +∞ for some arbitrary reference point x0 ∈ Ω.

This is a sufficient condition to keep Wp finite.

Example 3.2. Dirac measures are isometric embedding of Ω into P(Ω): Wp(δx, δy) = d(x, y),
since Π(δx, δy) = {δ(x,y)}.

To prove that Wp is indeed a distance we will rely on the following powerful theorem which is
often useful to dissect and reassemble measures with certain sought-after properties.
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Theorem 3.3 (Disintegration [Ambrosio et al., 2005, Theorem 5.3.1]). Let Ω̃, Ω be compact
metric spaces, let f : Ω̃ → Ω be measurable and π ∈ P(Ω̃). Set µ = f]π ∈ P(Ω). Then there is
a family (πy)y∈Ω in P(Ω̃), unique µ-a.e., such that πy(f−1({y})) = 1 and for φ ∈ C(Ω̃) one has∫

Ω̃
φ dπ =

∫
Ω′

(∫
Ω̃
φ dπy

)
dµ(y) .

Sketch: Table, disintegration.

Comment: Disintegration formalizes the notion of conditional probability. It is easiest to visualize
in a discrete case when Ω̃ = Ω× Ω and f = proj0. Then π can be interpreted as table and any
πy will be the restriction of π to row y, renormalized to mass 1 (if the row is non-empty). πy
gives the probabilities of picking a given column under the condition that row y has already been
selected.

Example 3.4 (Disintegration of transport plan). Let π ∈ Π(µ, ν). Let (γx)x∈Ω be the disinte-
gration of π with respect to proj0. That is, for any φ ∈ C(Ω× Ω) have∫

Ω×Ω
φ(x, y) dπ(x, y) =

∫
Ω

(∫
Ω
φ(x, y) dγx(y)

)
dµ(x) .

γx can be interpreted as describing where mass particles starting in x are going. Note that it is
only uniquely defined µ-a.e..

Comment: By the disintegration theorem γx would be in P(Ω×Ω). But since γx(proj−1
0 ({x})) =

γx({x} × Ω) = 1 we can interpret γx as element of P(Ω).

Theorem 3.5. Wp is a metric on P(Ω).

Proof. • Wp is non-negative (since d(x, y)p ≥ 0), symmetric (since d(x, y)p is symmetric) and
finite (since Ω is compact, i.e., d is bounded).

• Let T : Ω→ Ω×Ω, T (x) = (x, x) be the ‘diagonal’ embedding of Ω into Ω×Ω. Wp(µ, µ) =
0, since π = T]µ ∈ Π(µ, µ) and

∫
dp dπ = 0: Note that (proji ◦ T )(x) = x and that

f](g]ρ) = (f ◦ g)]ρ. Hence, proji ]T]µ = µ. Further,∫
Ω×Ω

dp dπ =

∫
Ω×Ω

dp d(T]µ) =

∫
Ω
dp ◦ T dµ = 0 .

• Let Wp(µ, ν) = 0. Then there must be some π ∈ Π(µ, ν) with
∫

Ω×Ω d(x, y)p dπ(x, y) = 0,
which implies d(x, y) = 0 π-a.e., i.e., x = y π-a.e.. So for φ ∈ C(Ω)∫

Ω×Ω
φ(x) dπ(x, y) =

∫
Ω×Ω

φ(y) dπ(x, y)

and thus proj0 ]π = proj1 ]π which implies µ = ν.

• Towards triangle inequality: Let µ, ν, ρ ∈ P(Ω), let π01, π12 be optimal couplings for
Wp(µ, ν) and Wp(ν, ρ). Let (γ01,y)y∈Ω be the disintegration of π01 with respect to proj1.
That is, for any φ ∈ C(Ω× Ω) have∫

Ω×Ω
φ(x, y) dπ01(x, y) =

∫
Ω

(∫
Ω
φ(x, y) dγ01,y(x)

)
dν(y) .

Similarly, let (γ12,y)y∈Ω be the disintegration of π12 with respect to proj0.
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• Define a new measure π ∈ P(Ω× Ω) via∫
Ω×Ω

φ(x, z) dπ(x, z) =

∫
Ω

(∫
Ω×Ω

φ(x, z) dγ01,y(x) dγ12,y(z)

)
dν(y) .

Sketch: Some intuition for π.

• Claim: π ∈ Π(µ, ρ). For φ ∈ C(Ω) get∫
Ω×Ω

φ(x) dπ(x, z) =

∫
Ω

(∫
Ω×Ω

φ(x) dγ01,y(x) dγ12,y(z)

)
dν(y)

=

∫
Ω

(∫
Ω
φ(x) dγ01,y(x)

)
dν(y) =

∫
Ω×Ω

φ(x) dπ01(x, y) =

∫
Ω
φ dµ

• Triangle inequality:

Wp(µ, ρ) ≤
(∫

Ω×Ω
d(x, z)p dπ(x, z)

)1/p

=

(∫
Ω

(∫
Ω×Ω

d(x, z)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

≤
(∫

Ω

(∫
Ω×Ω

(
d(x, y) + d(y, z)

)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

Minkowski ineq.
≤

(∫
Ω

(∫
Ω×Ω

d(x, y)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

+

(∫
Ω

(∫
Ω×Ω

d(y, z)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

=

(∫
Ω×Ω

d(x, y)p dπ01(x, y)

)1/p

+

(∫
Ω×Ω

d(y, z)p dπ12(x, y)

)1/p

= Wp(µ, ν) +Wp(ν, ρ) .

Theorem 3.6 (Wp metrizes weak∗ convergence). Let (Ω, d) be a compact metric space. Wp

metrizes the weak∗ convergence on P(Ω). That is, for a sequence (µn)n and some µ in P(Ω) one
has:

[Wp(µn, µ)→ 0] ⇔ [µn
∗
⇀ µ]

Proof. • ⇒: assume Wp(µn, µ) → 0. Let (πn)n be a corresponding sequence of optimal
transport plans. Let µ̃ be a cluster point of (µn)n and let π ∈ Π(µ̃, µ) a corresponding
cluster point of (πn)n. As before, denote the converging subsequence also by (πn)n. One
has:

Wp(µ̃, µ) ≤ lim
n→∞

∫
Ω×Ω

dp dπn = lim
n→∞

Wp(µn, µ) = 0

Since Wp is a metric, µ̃ = µ. Hence, µn
∗
⇀ µ.
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• ⇐: assume µn
∗
⇀ µ. Let πn be optimal plans for Wp(µn, µ). Extract a converging sub-

sequence, again denoted by (πn)n. By Proposition 2.12 (stability of optimal plans) any
cluster point π of (πn)n is an optimal coupling for Wp(µ, µ). So:

0 = Wp(µ, µ) =

∫
Ω×Ω

dp dπ = lim
n→∞

∫
Ω×Ω

dp dπn = lim
n→∞

Wp(µn, µ)

In the following example we illustrate the qualitatively different behaviour of Wasserstein dis-
tances for p > 1 and p = 1.

Example 3.7 (‘Shifting a bookshelf’). Let n ∈ N,

µ = 1
n

n−1∑
i=0

δi, ν = 1
n

n−1∑
i=0

δi+1.

Sketch: µ and ν and the optimal couplings.
What are the optimal couplings for Wp(µ, ν)? For p > 1 the unique optimal coupling is given by

π = 1
n

n−1∑
i=0

δ(i,i+1) .

For p = 1 any π ∈ Π(µ, ν) with y ≥ x π(x, y)-a.e. is optimal. Two extreme examples: same as
for p > 1, or only move first mass from i = 0 to i = n − 1. Any coupling that does not move
mass to the left is optimal.
For p ∈ (0, 1) Wp does not define a distance, but the behaviour is still interesting. The unique
optimal is given by

π = 1
n

(
n−1∑
i=1

δ(i,i) + δ(0,n)

)
.

That is, it is preferred to leave most masses in place and only move the first one from the
beginning to the end.
This different behaviour is linked to the convexity / concavity of the function x 7→ |x|p depending
on p: for p > 1, many small transports are cheaper than one large one. For p ∈ (0, 1) one larger
transport is cheaper. For p = 1 any combination of ‘monotonous’ transports has equal cost.
Comment: How to proof that these couplings are optimal? By guessing corresponding dual
variables.

3.2 Displacement interpolation

An intriguing property of the Wasserstein space (P(Ω),Wp) is that it is a length space if (Ω, d)
is a length space.

Definition 3.8 (Length space). A metric space (Ω, d) is a length space if for every pair (x, y) ∈ Ω
there is a continuous map γx,y ∈ C([0, 1],Ω) with

γx,y(0) = x, γx,y(1) = y, d
(
γx,y(s), γx,y(t)

)
= d(x, y) · |s− t|

for s, t ∈ [0, 1].
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Theorem 3.9. If (Ω, d) is a length space and the map (x, y) 7→ γx,y that takes start and endpoint
to a shortest path between them is measurable then (P(Ω),Wp) is a length space.

Comment: Sufficient conditions for the measurability of (x, y) 7→ γx,y can be found for instance
in [Villani, 2009, Proposition 7.16].

Proof. • Let (γx,y)(x,y)∈Ω2 be the family of maps for (Ω, d) as given by Definition 3.8. For
fixed s, t ∈ [0, 1] let

Γs : Ω× Ω→ Ω, (x, y) 7→ γx,y(s),

Γs,t : Ω× Ω→ Ω× Ω, (x, y) 7→ (γx,y(s), γx,y(t)).

Comment: Between γ and Γ the roles of ‘index’ and ‘arguments’ of the functions are
exchanged. This is formally helpful to use the push-forward of Γ.

• For given µ, ν ∈ P(Ω) let π be an optimal coupling for Wp(µ, ν). Denote ρs = Γs ]π.

Sketch: Interpretation of ρs.

• Claim: s 7→ ρs is a geodesic in (P(Ω),Wp) between µ and ν. A ‘length space map’ for
(P(Ω),Wp) between µ and ν, γµ,ν : [0, 1] → P(Ω) is given by γµ,ν(s) = ρs. We will now
show this.

• Measurability of Γs: By assumption S : (x, y) 7→ γx,y is measurable. For fixed t ∈ [0, 1] the
map et : C([0, 1],Ω)→ Ω, γ 7→ γ(t) is continuous and thus measurable. We find Γs = es◦S.
Similarly, Γs,t = (Γs,Γt) = (es, et) ◦ S is measurable.

• Claim: Γs,t ]π ∈ Π(ρs, ρt).

proj0 ]Γs,t ]π = (proj0 ◦ Γs,t)]π = Γs ]π = ρs

• Claim: Wp(ρs, ρt) = |s− t| ·Wp(µ, ν).

Wp(ρs, ρt)
p ≤

∫
Ω×Ω

d(x, y)p d(Γs,t ]π)(x, y) =

∫
Ω×Ω

((d ◦ Γs,t)(x, y))p dπ(x, y)

=

∫
Ω×Ω

(d(γx,y(s), γx,y(t)))
p dπ(x, y) = |s− t|p

∫
Ω×Ω

(d(x, y))p dπ(x, y)

Wp(ρs, ρt) ≤ |s− t| ·Wp(µ, ν)

So for 0 ≤ s ≤ t ≤ 1 have

Wp(µ, ρs) ≤ s ·Wp(µ, ν), Wp(ρs, ρt) ≤ (t− s) ·Wp(µ, ν), Wp(ρt, ν) ≤ (1− t) ·Wp(µ, ν)

So

Wp(µ, ρs) +Wp(ρs, ρt) +Wp(ρt, ν) ≤Wp(µ, ν)

and by the triangle inequality

Wp(µ, ρs) +Wp(ρs, ρt) +Wp(ρt, ν) ≥Wp(µ, ν) .

Hence we must have equality and in particular Wp(ρs, ρt) = |s− t| ·Wp(µ, ν).
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4 Wasserstein-1 space

In this section we study in more detail the structure of the Wasserstein distance for p = 1. Short
summary: the dual problem allows a particular simplification, only possible for p = 1, which
then can be reformulated as min cost flow problem (also known as Beckmann’s problem). This
is particularly suitable for numerical optimization.

4.1 Duality: Kantorovich–Rubinstein formula

Definition 4.1 (1-Lipschitz functions). A function α : Ω → R is called 1-Lipschitz if for any
pair x, y ∈ Ω one finds

|α(x)− α(y)| ≤ d(x, y) .

The set of 1-Lipschitz functions on Ω is denoted by Lip(Ω) and evidently Lip(Ω) ⊂ C(Ω).

Theorem 4.2 (Kantorovich–Rubinstein formula).

W1(µ, ν) = sup

{∫
Ω
α d(µ− ν)

∣∣∣∣α ∈ Lip(Ω)

}
Proof. • By Theorem 2.5 (dual Kantorovich problem) we find

W1(µ, ν) = sup

{∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣α, β ∈ C(Ω), α(x) + β(y) ≤ d(x, y) for all (x, y) ∈ Ω2

}
and with Theorem 2.9 (existence of dual optimizers) we can restrict the optimization in
the dual problem to pairs (α, β) with α = βc, β = αc (note that by symmetry of c we need
not distinguish between c- and c-transform).

• For any potentially optimal pair (α, β) we know:

α(x) = inf {d(x, y)− β(y)|y ∈ Ω} (3)

Since d, β continuous, Ω compact: inf is min. For fixed x let y be minimizer. For different
x′:

α(x′) ≤ d(x′, y)− β(y) ≤ d(x′, x) + d(x, y)− β(y) = d(x′, x) + α(x)

where we have used the triangle inequality d(x′, y) ≤ d(x′, x) + d(x, y). This holds for all
pairs (x, x′) ∈ Ω2. So α ∈ Lip(Ω) and likewise β ∈ Lip(Ω).

• Set y = x in (3) to get α(x) ≤ −β(x). Use that β is 1-Lipschitz to get β(y) ≤ β(x)+d(x, y)
to get

α(x) = inf {d(x, y)− β(y)|y ∈ Ω} ≥ inf {d(x, y)− β(x)− d(x, y)|y ∈ Ω} = −β(x).

So for optimal pair have α = −β.

• So in dual Kantorovich problem can restrict optimization to 1-Lipschitz α and β where
β = −α.
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Sketch: Interpretation with µ, ν being Dirac measures.

Remark 4.3. From the proof we learn: For c(x, y) = d(x, y) the set of (c, c)-concave functions
are 1-Lipschitz functions and if α ∈ Lip(Ω) then αc = −α.

An advantage of the Kantorovich–Rubinstein formula is that α ∈ Lip(Ω) can often be turned into
a local constraint (pointwise, or on small neighbourhoods) and thus, the large set of constraints
of the original dual Kantorovich problem (α(x) + β(y) ≤ d(x, y) for all (x, y) ∈ Ω2) can be
replaced by a smaller number of constraints.

4.2 Beckmann’s problem

Throughout this subsection Ω is compact and the closure of an open set of Rd. d is the metric
induced by shortest paths in Ω, according to the Euclidean length of paths.
Then the Lipschitz constraint can be approximated by a local constraint on the gradient of the
Kantorovich potential α. Going then back to a primal formulation one finds a transport problem
where movement of mass is described by a vector field ω ∈M(Ω)2 that describes how mass flows
from µ to ν.

Definition 4.4 (Weak divergence). A measure ω ∈ M(Ω)2 is said to have weak divergence
ρ ∈M(Ω), we write divω = ρ, if for every φ ∈ C1(Ω) one has∫

Ω
(∇φ) · dω +

∫
Ω
φ dρ = 0 .

Comment: If ω is a smooth vector field can apply integration by parts on first term to get
standard definition of divergence.

Theorem 4.5 (Beckmann’s problem).

W1(µ, ν) = min
{
‖ω‖M(Ω)2

∣∣ω ∈M(Ω)2, divω = ν − µ
}

Comment: Interpretation: ω is flow field that takes µ to ν. At each point, ω gives orientation
and amount of flow.

Comment: After discretization with |Ω| = N discrete points, the standard Kantorovich dual
problem needs O(N) variables and O(N2) constraints. Beckmann’s problem only requires O(N)
variables and constraints.

Proof. • Start with Kantorovich–Rubinstein formula, Theorem 4.2:

W1(µ, ν) = sup

{∫
Ω
α d(µ− ν)

∣∣∣∣α ∈ Lip(Ω)

}

• C1(Ω) ∩ Lip(Ω) is dense in Lip(Ω) for the sup-norm.

Comment: The proof is intuitive but somewhat lengthy. It can be found, e.g., in [Schmitzer
and Wirth, 2017].

• Since α 7→
∫

Ω α d(µ−ν) is continuous, by density can restrict optimization of α to C1(Ω)∩
Lip(Ω).
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• Find

C1(Ω) ∩ Lip(Ω) = {α ∈ C1(Ω) | ‖∇α(x)‖ ≤ 1 for all x ∈ Ω} = {α ∈ C1(Ω) | ‖∇α‖C(Ω)2 ≤ 1}

• Get:

W1(µ, ν) = sup
{
−f(α)− g(∇α)

∣∣α ∈ C1(Ω)
}

with

f(α) =

∫
Ω
α d(ν − µ),

g(v) =

{
0 if ‖v‖C(Ω)2 ≤ 1

∞ else.

• Now apply Fenchel-Rockafellar. f , g are convex, lower semi-continuous (f is linear, g is
indicator of unit ball of sup-norm). X = C1(Ω), Y = C(Ω)2, A = ∇. At α : x 7→ 0 have
f(α) <∞ and g(∇α) <∞ and g is continuous at ∇α.

• Dual problem:

W1(µ, ν) = min
{
f∗(−∇∗ω) + g∗(ω)

∣∣ω ∈M(Ω)2
}

• Compute conjugates:

f∗(−∇∗ω) = sup
{
〈α,−∇∗ω〉C1(Ω),C1(Ω)∗ − f(α)

∣∣∣α ∈ C1(Ω)
}

= sup

{
〈−∇α, ω〉C(Ω)2,M(Ω)2 +

∫
Ω
α d(µ− ν)

∣∣∣∣α ∈ C1(Ω)

}
=

{
0 if divω = ν − µ
+∞ else.

g∗(ω) = sup
{
〈v, ω〉C(Ω)2,M(Ω)2

∣∣∣v ∈ C(Ω)2, ‖v‖C(Ω)2 ≤ 1
}

So g∗ is operator-norm of ω (interpreted as linear map on C(Ω)2). By duality:

g∗(ω) = ‖ω‖M(Ω)2

Remark 4.6 (Min-cost flow on discrete graph). Assume Ω is a finite, discrete vertex set of a
graph with edge set E ⊂ Ω × Ω and edge lengths ` : E → (0,∞]. Let d be metric induced by
shortest paths in (Ω, E, `). Then

[α ∈ Lip(Ω)]⇔ [|α(x)− α(y)| ≤ `(x, y) for all (x, y) ∈ E] .

In many applications |E| � |Ω| and thus the right condition is easier to check than the left.
Can define discrete gradient operator G : C(Ω) → C(E), (Gα)(x, y) = (α(x) − α(y))/`(x, y)
and replace Lipschitz constraint by local constraint on gradient, as above. This leads to discrete
min-cost flow problem on metric graph. See for instance [Bertsekas and Eckstein, 1988].

24



5 The Benamou–Brenier formula for W2

Similar as in Section 4.2: throughout this section Ω is convex, compact and the closure of an
open set of Rd. d is the metric induced by shortest paths in Ω, according to the Euclidean length
of paths. Due to convexity of Ω, shortest paths are given by straight lines.

5.1 Intuition

In Section 3.2 we have discussed the displacement interpolation: for a given optimal coupling π,
mass can be thought of as traveling along geodesics with constant speed. In In Section 4.2 we
have given Beckmann’s problem as equivalent formulation for W1: mass transport is described
by a (time-independent) flow field ω. Now we study the Benamou-Brenier formulation for W2

on Rd. Intuitively it is the analogy of Beckmann’s formulation for W2. But here we need a
time-dependent flow field.
We start with an intuitive and informal discussion. In the Benamou–Brenier formulation, mass
transport between µ and ν ∈ P(Ω) is described as directly in the displacement interpolation: we
are looking for a function [0, 1] 3 t 7→ ρt ∈ P(Ω) such that ρt is the displacement interpolation
between µ and ν. So we want in particular:

ρ0 = µ, ρ1 = ν (4a)

The temporal change of ρt will be described by a time dependent vector field vt : Ω→ Rd where
vt(x) gives the velocity of a mass particle at time t and position x. ρt and vt are connected by
the ‘continuity equation’:

∂tρt + div(ρt vt) = 0 (4b)

Remark 5.1 (Interpretation of continuity equation). Assume ρt is Lebesgue-absolutely contin-
uous at all times. By abuse of notation write ρt for its Lebesgue density. Let A ⊂ Ω be an open
set with a smooth surface ∂A. Then formally from the continuity equation we obtain with the
divergence theorem:

d
dt

(∫
A
ρt dx

)
= −

∫
A

div(ρt vt) dx =

∫
∂A
ρt vt · n(s)ds

where n is the outward pointing unit-normal at s ∈ ∂A and ds is the surface volume measure of
∂A.
That is, the change of mass in the volume A is related to the flow of ρt vt across the surface ∂A.

It will turn out that a pair (ρt, vt) describes the displacement interpolation between µ and ν
if it solves the continuity equation with temporal boundary conditions, (4), and minimizes the
following functional: ∫

[0,1]

∫
Ω
|vt(x)|2 dρt(x) dt (5)

It is often called the ‘action’ functional. This can be interpreted as (twice) the integral of the
kinetic energy of all particles over the time-interval [0, 1] (recall the iconic formula Ekinetic =
1
2mv2). So the displacement interpolation is the trajectory between µ and ν with the least
average kinetic energy of the particles.
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This formulation has several problems: when ρt is not Lebesgue-absolutely continuous, but
contains concentrated Dirac masses, it is difficult to define the divergence condition (4b) as
above. Moreover, the functional (5) is not jointly convex in ρt and vt.
In the next sections we will provide a rigorous definition of the Benamou–Brenier formulation
and sketch the proof for equivalence with the Kantorovich definition of W2.

5.2 Rigorous definition

Now we give a rigorous definition of the Benamou–Brenier formulation. ρ will be defined as a
measure on [0, 1]×Ω. The velocity field v will be replaced by a momentum field ω ∈M+([0, 1]×
Ω)d where intuitively ω(t, x) represents ρt(x) vt(x). The decomposition of ρ and ω into time-slices
will be discussed in Proposition 5.7.

Definition 5.2 (Weak continuity equation). Let µ, ν ∈ P(Ω). A pair (ρ, ω) ∈ M([0, 1]× Ω)×
M([0, 1]×Ω)d is said to solve the weak continuity equation with temporal boundary conditions
µ and ν if ∫

[0,1]×Ω
(∂tφ) dρ+

∫
[0,1]×Ω

∇φ · dω =

∫
Ω
φ(1, ·) dν −

∫
Ω
φ(0, ·) dµ

for all φ ∈ C1([0, 1]× Ω). We denote the set of solutions by CE(µ, ν).

Remark 5.3. CE(µ, ν) is an affine set. When (ρ1, ω1), (ρ2, ω2) are two solutions, all points on
the entire line spanned by them are solutions as well. This is, due to the left hand side being
linear in (ρ, ω). In particular CE(µ, ν) is convex.
Moreover, since ∂tφ ∈ C([0, 1]× Ω) and ∇φ ∈ C([0, 1]× Ω)d, CE(µ, ν) is weak∗-closed.

Remark 5.4 (1-homogeneous functions and integration). A function f : Rn → R is 1-homo-
geneous if

f(λ · x) = λ · f(x)

for all λ ≥ 0, x ∈ Rn (with the convention 0 · ∞ = 0). Let µ ∈M(Ω)n and let σ ∈M+(Ω) such
that µ� σ. Then can define following integral:∫

Ω
f
(

dµ
dσ

)
dσ

It is important to note that due to 1-homogeneity of f the integral does not depend on the choice
of σ as long as µ� σ. Let τ ∈M+(Ω) be another measure such that µ� τ and let ν ∈M+(Ω)
be such that σ, τ � ν. One finds for any φ ∈ C(Ω)n∫

Ω
φ · dµ =

∫
Ω
φ · dµ

dσdσ =

∫
Ω
φ · dµ

dσ
dσ
dν dν .

Therefore,

dµ
dν = dµ

dσ
dσ
dν = dµ

dτ
dτ
dν

and consequently:∫
Ω
f
(

dµ
dσ

)
dσ =

∫
Ω
f
(

dµ
dσ

)
dσ
dν dν =

∫
Ω
f
(

dµ
dσ

dσ
dν

)
dν =

∫
Ω
f
(

dµ
dτ

dτ
dν

)
dν =

∫
Ω
f
(

dµ
dτ

)
dτ .
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Definition 5.5 (Action functional). Let

Φ : R× Rd → R ∪ {∞}, (ρ, ω) 7→


‖ω‖2
ρ if ρ > 0,

0 if (ρ, ω) = (0, 0),

+∞ else.

Comment: If (ρ, ω) = (ρ, ρ v), ρ ≥ 0 then Φ(ρ, ω) = ‖v‖2 ρ. So this coincides with informal
definition of action.
Φ is jointly convex and lower semi-continuous since sub-level sets where Φ(ρ, ω) ≤ C are given
by ρ ≥ C−1 ‖ω‖2. Moreover, Φ is jointly 1-homogeneous.
Sketch: Φ and its sub-level sets.
The action is then given by

A(ρ, ω) =

∫
[0,1]×Ω

Φ
(

d(ρ,ω)
dσ

)
dσ(t, x)

where σ is any measure inM+([0, 1]×Ω) such that (ρ, ω)� σ. Due to Remark 5.4 the definition
does not depend on the choice of σ.

Now we have gathered the ingredients for the rigorous definition of the Benamou–Brenier for-
mulation.

Definition 5.6 (Benamou–Brenier formulation).

WBB(µ, ν)2 := inf {A(ρ, ω)|(ρ, ω) ∈ CE(µ, ν)} (6)

In the following we use the ‘time projection’ map:

T : [0, 1]× Ω→ [0, 1], (t, x) 7→ t . (7)

So far, ρ and ω were only defined as joint measures in time and space. For potential minimizers
of the Benamou–Brenier formulation we show that they can be decomposed into ‘time-slices’
such that for Lebesgue-almost every time t the spatial arrangement of mass is fixed.

Proposition 5.7 (Time-disintegration of ρ). Let (ρ, ω) ∈ CE(µ, ν), A(ρ, ω) <∞. Then

• ρ ∈M+([0, 1]× Ω), ‖ρ‖M([0,1]×Ω) = 1,

• T]ρ = L[0,1] where the latter is the Lebesgue measure on [0, 1]. There is a Lebesgue-
a.e. unique family of measures (ρt)t∈[0,1] with ρt ∈ P(Ω) such that for any φ ∈ C([0, 1]×Ω)∫

[0,1]×Ω
φ(t, x) dρ(t, x) =

∫
[0,1]

[∫
Ω
φ(t, x) dρt(x)

]
dt .

• ω � ρ. (This implies that ω can also be decomposed into time-slices.)

Proof. • If ρ /∈ M+([0, 1] × Ω) then dρ
dσ < 0 for a set that is not σ-negligible, for every

σ ∈M+([0, 1]× Ω) with ρ� σ and thus A(ρ, ω) =∞.

• Use the test function φ(t, x) = t in the definition of CE(µ, ν) to get∫
[0,1]×Ω

dρ(t, x) =

∫
Ω
dν(x) = 1 .

This is the Radon-norm of ρ since ρ is non-negative.
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• Let f ∈ C([0, 1]) and let

F (t) :=

∫ t

0
f(s) ds .

By construction ∂tF = f and F ◦ T ∈ C1([0, 1]× Ω). So from the continuity equation we
know that∫

[0,1]
f d(T]ρ)

∫
[0,1]×Ω

(∂tF ) ◦ T dρ =

∫
Ω

(F ◦ T )(1, ·) dν −
∫

Ω
(F ◦ T )(0, ·) dµ = F (1)− F (0) .

So the integral against T]ρ coincides with the Lebesgue measure for all test functions, hence
T]ρ = L[0,1].

• Let σ be some reference measure with (ρ, ω) � σ. If ω 6� ρ then there must be a set
A ⊂ [0, 1] × Ω with σ(A) > 0 where dρ

dσ = 0 but dω
dσ 6= 0 and consequently Φ( dρ

dσ ,
dω
dσ ) = ∞

and thus A(ρ, ω) =∞.

Next, we establish that minimizers exist.

Proposition 5.8. If WBB(µ, ν) <∞ then minimizers of the Benamou–Brenier formulation (6)
exist.

Finiteness of WBB(µ, ν) will follow from the equivalence results of the next section.

Proof. • Let (ρn, ωn)n be a minimizing sequence. We may assume (ρn, ωn) ∈ CE(µ, ν) for all
n and that A(ρn, ωn) ≤ C for some C <∞.

• By Proposition 5.7 ρn ≥ 0, ‖ρn‖M([0,1]×Ω) = 1 and ωn � ρn. Therefore we can pick σ = ρn
as reference measure in the definition of the action A(ρn, ωn):

A(ρn, ωn) =

∫
[0,1]×Ω

Φ
(

dρn
dρn ,

dωn
dρn

)
dρn =

∫
[0,1]×Ω

∥∥∥dωn
dρn

∥∥∥2
dρn

With this can bound Radon-norm of ωn:

‖ωn‖M([0,1]×Ω)d =

∫
[0,1]×Ω

∥∥∥dωn
dρn

∥∥∥ dρn
Cauchy–Schwarz

≤(∫
[0,1]×Ω

∥∥∥dωn
dρn

∥∥∥2
dρn ·

∫
[0,1]×Ω

12dρn

)1/2

= A(ωn, ρn)1/2 ≤ C1/2 .

• Therefore, the sequence is uniformly bounded in norm and thus, by Banach–Alaoglu (The-
orem 1.22) must have a convergent subsequence with limit (ρ, ω).

• Since CE(µ, ν) is weak∗-closed, one has (ρ, ω) ∈ CE(µ, ν). Moreover, since Φ is convex,
lower semi-continuous and 1-homogeneous, the functional A is lower semi-continuous (see
for instance [Ambrosio et al., 2000, Theorem 2.38]). Therefore, (ρ, ω) must be a minimizer
of WBB.
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5.3 Equivalence with Kantorovich formulation

So far, we have given a rigorous definition of the Benamou–Brenier formulation and established
that minimizers exist. Now we will sketch how to show that it is actually equivalent to the
Kantorovich formulation for W2. We will proof that WBB ≤ W2. The converse inequality
requires several tedious smoothing arguments. We only sketch the idea of the proof and refer to
the literature for the details (e.g. [Villani, 2003, Theorem 8.1]).

Proposition 5.9.

WBB(µ, ν) ≤W2(µ, ν)

Sketch of proof. • For fixed x, y ∈ Ω let

γx,y : [0, 1]→ Ω, t 7→ (1− t)x+ t y

parametrize the constant-speed geodesic between x and y along the straight line between
them. Define measures ρx,y ∈M+([0, 1]× Ω) and ωx,y ∈M([0, 1]× Ω)d by∫

[0,1]×Ω
φ dρx,y =

∫
[0,1]

φ(t, γx,y(t)) dt,
∫

[0,1]×Ω
ψ · dωx,y =

∫
[0,1]

ψ(t, γx,y(t)) · (y − x) dt

for φ ∈ C([0, 1]× Ω), ψ ∈ C([0, 1]× Ω)d. Note that ωx,y � ρx,y and that dωx,y

dρx,y = y − x.

Comment: (ρx,y, ωx,y) describe Dirac particle moving at constant speed from x to y.

• (ρx,y, ωx,y) ∈ CE(δx, δy): For φ ∈ C1([0, 1]× Ω) have∫
[0,1]×Ω

∂tφ dρx,y +

∫
[0,1]×Ω

∇φ dωx,y

=

∫
[0,1]

[(∂tφ)(t, γx,y(t)) + (∇φ)(t, γx,y(t)) · (y − x)] dt

=

∫
[0,1]

[
d
dt
φ(t, γx,y(t))

]
dt = φ(1, y)− φ(0, x) .

• Compute A(ρx,y, ωx,y). Use that ωx,y � ρx,y.

A(ρx,y, ωx,y) =

∫
[0,1]×Ω

Φ
(

1,
dωx,y

dρx,y

)
dρx,y =

∫
[0,1]×Ω

‖x− y‖2 dρx,y = ‖x− y‖2 = d(x, y)2

• For µ, ν let π be optimal coupling. Define ρ, ω by

ρ =

∫
Ω×Ω

ρx,y dπ(x, y), ω =

∫
Ω×Ω

ωx,y dπ(x, y).

Comment: The above is called a ‘Pettis integral’. Think of it as superposition of ρx,y with
weights π(x, y).
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• One can quickly verify that (ρ, ω) ∈ CE(µ, ν). By using thatA is convex and 1-homogeneous
and a generalization of Jensen’s inequality to topological vector spaces and Pettis integrals,
[Perlman, 1974], one finds:

WBB(µ, ν)2 ≤ A(ρ, ω) = A
(∫

Ω×Ω
ρx,y dπ(x, y),

∫
Ω×Ω

ωx,y dπ(x, y)

)
≤
∫

Ω×Ω
A(ρx,y, ωx,y) dπ(x, y) =

∫
Ω×Ω

d(x, y)2 dπ(x, y) = W2(µ, ν)2

• One can avoid Pettis integrals and the generalization of Jensen’s inequality as follows:
approximate µ and ν by sequences of superpositions of finite numbers of Dirac measures.
For each step, the optimal coupling will be a finite number of Dirac measures for which
standard finite sub-additivity can be used. Then go to the limit and use that W2 is weak∗
continuous since it metrizes the weak∗ topology.

Now we sketch how to proof the converse inequality.

• Let v ∈ C1([0, 1] × Ω)d be a differentiable vector field, let ϕ : [0, 1] × Ω → Ω be its flow,
i.e. ϕ is defined by

∂tϕ(t, x) = v(t, ϕ(t, x)), ϕ(0, x) = x.

• Set ρt = ϕt ]µ. Note that ρ0 = µ. Assume that v is a flow field that takes the mass µ to ν.
That means ρ1 = ν.

• Define measures ρ and ω by∫
[0,1]×Ω

φ dρ =

∫
[0,1]

[∫
Ω
φ(t, x) dρt(x)

]
dt,

∫
[0,1]×Ω

ψ · dω =

∫
[0,1]

[∫
Ω
ψ(t, x) · v(t, x) dρt(x)

]
dt.

for φ ∈ C([0, 1]× Ω) and ψ ∈ C([0, 1]× Ω)d.

• Note that (ρ, ω) ∈ CE(µ, ν): For φ ∈ C1([0, 1]× Ω) have∫
[0,1]×Ω

∂tφ dρ =

∫
[0,1]×Ω

(∂tφ)(t, ·) ◦ ϕ(t, ·) dµ dt

=

∫
[0,1]×Ω

[
d
dt

(φ(t, ·) ◦ ϕ(t, ·))− ((∇φ)(t, ·) ◦ ϕ(t, ·) · v(t, ·) ◦ ϕ(t, ·)
]
dµ dt

=

∫
Ω

[φ(t, ·) ◦ ϕ(t, ·))]10 dµ−
∫

[0,1]×Ω
(∇φ(t, ·) · v(t, ·)) ◦ ϕ(t, ·) dµ dt

=

∫
Ω
φ(1, ·) dν −

∫
Ω
φ(0, ·) dµ−

∫
[0,1]×Ω

∇ϕ · dω .
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• For the action get:

A(ρ, ω) =

∫
[0,1]×Ω

Φ
(

1, dω
dρ

)
dρ =

∫
[0,1]×Ω

‖v(t, x)‖2 dρ(t, x)

=

∫
[0,1]×Ω

‖v(t, ϕ(t, x))‖2 dµ(x) dt =

∫
Ω

[∫
[0,1]
‖(∂tϕ(t, x)‖2dt

]
dµ(x)

≥
∫

Ω

∥∥∥∥∥
∫

[0,1]
∂tϕ(t, x) dt

∥∥∥∥∥
2

︸ ︷︷ ︸
=‖ϕ(1,x)−ϕ(0,x)‖2

dµ(x) =

∫
Ω
‖ϕ(1, x)− x‖2dµ(x)

This is the Monge-cost associated with the transport map ϕ(1, ·). And thus this is larger
than W2(µ, ν)2.

• To extend this to a full proof for the inequalityWBB ≥W2 one needs to apply a sequence of
smoothing arguments to approximate any (ρ, ω) in such a way that v = dω

dρ is in C1([0, 1]×
Ω).

6 Entropy regularization and Sinkhorn algorithm

Solving the optimal transport problem numerically is a considerable challenge. The Monge
formulation entails a non-convex optimization problem with non-linear constraints. While the
Kantorovich formulation yields convex primal and dual problems, their naive dimensionality
grows quadratically with the discretization resolution of the base domain Ω. There is a diverse
zoo of fundamentally very different numerical approaches that

• apply to different types of base spaces and cost functions,

• have different requirements on the structure and regularity of the marginals,

• and scale differently in terms of run-time and memory.

A decent compromise between flexibility, accuracy, run-time and implementation complexity is
the entropy regularization approach.

6.1 Discretization

For the sake of simplicity and with numerical optimization in mind we will now turn to discretized
problems. The Kantorovich formulation allows elegant discretization via discretization of the
marginals. Let

Ω0 = {x0, . . . , xM−1}, Ω1 = {y0, . . . , yN−1}

be discrete, finite subsets of Ω with cardinalities M = #(Ω0), N = #(Ω1). Assume µ and ν are
given by superpositions of Dirac measures located on Ω0 and Ω1:

µ =
M−1∑
i=0

µi δxi , ν =
N−1∑
i=0

νi δyi
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with coefficient vectors µ ∈ RM , ν ∈ RN . Then any feasible coupling π ∈ Π(µ, ν) must be
concentrated on Ω0 ×Ω1 and can be written as

π =

M−1∑
i=0

N−1∑
j=0

πi,j δ(xi,yj)

for a nonnegative matrix π ∈ RM×N+ . The marginal constraints proj0 ]π = µ and proj1 ]π = ν
then become

µi =
N−1∑
j=0

πi,j , νj =
M−1∑
i=0

πi,j .

These can be written compactly as

µ = π 1N , ν = π>1M

where 1N denotes the vector of RN with all entries being 1 and π 1N denotes standard matrix-
vector multiplication.
For a cost function c ∈ C(Ω× Ω) denote by c ∈ RM×N ,

ci,j = c(xi, yj)

the discrete cost coefficient matrix. The linear transport cost is then given by∫
Ω×Ω

c dπ = 〈c,π〉 with 〈c,π〉 :=

M−1∑
i=0

N−1∑
j=0

ci,j πi,j .

Finally, the discretized transport problem reads

min
{
〈c,π〉

∣∣∣π ∈ RM×N+ , π 1N = µ, π>1M = ν
}
. (8)

The corresponding dual problem is

max
{
〈α,µ〉+ 〈β,ν〉

∣∣(α,β) ∈ RM × RN ,
αi + βj ≤ ci,j for all i = 0, . . . ,M − 1, j = 0, . . . , N − 1} . (9)

Remark 6.1. A nice property of the Kantorovich formulation is that after discretization of the
marginals, the exact transport problem becomes finite-dimensional and no further discretization
is required. The stability result, Proposition 2.12, guarantees that the discrete optimal cou-
plings π converge to a continuous optimal coupling as µ and ν are approximated with increasing
resolution and accuracy.

6.2 Entropy regularization of the Kantorovich problem

Definition 6.2 (Kullback–Leibler divergence). Let Ω be a measure space and let ν ∈ M+(Ω).
The Kullback–Leibler divergence (or relative entropy) with respect to ν is defined as

KL(·|ν) :M(Ω)→ R ∪ {∞},

KL(µ|ν) =

{∫
Ω log

(
dµ
dν

)
dµ− µ(Ω) + ν(Ω) if µ ∈M+(Ω), µ� ν,

+∞ else.
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The entropy regularized variant of the Kantorovich transport problem is defined as

inf

{∫
Ω×Ω

c dπ + ε KL(π|ρ)

∣∣∣∣π ∈ Π(µ, ν)

}
(10)

where ε > 0 is the regularization weight and ρ ∈M+(Ω× Ω) is a reference measure on Ω× Ω.
Now let µ and ν be discrete measures, as in the previous section, supported on Ω0 and Ω1. For
π to be feasible its support must be contained in Ω0 ×Ω1. At the same time, for KL(π|ρ) <∞
it is necessary that π � ρ. Thus, for a reasonable discretization of (10) we must pick a suitable
discrete reference measure ρ of the form

ρ =

M−1∑
i=0

N−1∑
j=0

ρi,j δ(xi,yj)

with non-negative coefficients ρ ∈ RM×N . For simplicity we assume that ρ is strictly positive,
ρi,j > 0 for all (i, j).
The Kullback–Leibler divergence KL(π|ρ) can then be expressed directly in terms of π and ρ:

KL(π|ρ) = KL(π|ρ) :=

{∑M−1
i=0

∑N−1
j=0

(
log
(
πi,j

ρi,j

)
· πi,j − πi,j + ρi,j

)
if π ≥ 0,π � ρ,

+∞ else.

with the convention that 0 log 0 = 0. Here π � ρ means that [ρi,j = 0]⇒ [πi,j = 0] which is the
natural discrete analogue of absolute continuity. Note that for fixed ρ or ρ, KL(·|ρ) and KL(·|ρ)
are convex, lower-semicontinuous functions.
So after discretization of µ, ν and ρ, (10) becomes the regularized equivalent of (8):

inf
{
〈c,π〉+ εKL(π|ρ)

∣∣∣π ∈ RM×N , π 1N = µ, π>1M = ν
}

(11)

Note that the non-negativity constraint for π in (8) is already implied by the discrete Kullback–
Leibler divergence in (11).
Now we introduce the kernel matrix k ∈ RM×N+ ,

ki,j = exp(−ci,j/ε) · ρi,j . (12)

We find

ci,j · πi,j + ε log
(
πi,j

ρi,j

)
= ε log

(
πi,j

ki,j

)
and thus

〈c,π〉+ εKL(π|ρ) = εKL(π|k)− k(Ω0 ×Ω1) + ρ(Ω0 ×Ω1) .

Therefore, up to a constant, (11) is equivalent to

inf
{
εKL(π|k)

∣∣∣π ∈ RM×N , π 1N = µ, π>1M = ν
}

(13)

As usual, we also study a corresponding dual problem. For this we need the Fenchel–Legendre
conjugate of KL(·|k) for fixed k.
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Lemma 6.3.

KL∗(·|k) : RM×N → R ∪ {∞}, φ 7→
M−1∑
i=0

N−1∑
j=0

[exp(φi,j)− 1]ki,j

Proposition 6.4. Minimizers of (13) exist and a dual problem is given by

sup
{
〈α,µ〉+ 〈β,ν〉 − εKL∗(α⊕ β/ε|k)

∣∣(α,β) ∈ RM × RN
}

(14)

where α⊕ β ∈ RM×N is defined by (α⊕ β)i,j = αi + βj .

Proof. • We write (14) as

− inf
{
f(α,β) + g(A (α,β))

∣∣(α,β) ∈ RM × RN
}

with

f : RM × RN → R ∪ {∞}, (α,β) 7→ − 〈α,µ〉 − 〈β,ν〉 ,
g : RM×N → R ∪ {∞}, φ 7→ εKL∗(φ/ε|k),

A : RM × RN → RM×N , (α,β) 7→ α⊕ β .

• f and g are convex and lower continuous, A is linear and bounded, hence we can apply the
Fenchel–Rockafellar theorem, Theorem 2.4, to find that this is equivalent to solving

−max
{
−f∗(−A∗ π)− g∗(π)

∣∣π ∈ RM×N
}

= min
{
f∗(−A∗ π) + g∗(π)

∣∣π ∈ RM×N
}
.

• We obtain:

f∗ : RM × RN → R ∪ {∞}, (σ, τ ) 7→ ι{−µ}(σ) + ι{−ν}(τ ),

g∗ : RM×N → R ∪ {∞}, π 7→ εKL(π|k),

A∗ : RM×N → RM × RN , π 7→ (π 1M ,π
>1N ) .

• In particular:

f∗(−A∗ π) = ι{−µ}(−π 1M ) + ι{−ν}(−π>1N ) = ι{µ}(π 1M ) + ι{ν}(π
>1N )

which enforces the marginal constraints.

• Existence of a minimizer of (13) follows again from the Fenchel–Rockafellar theorem.

Note that the minimal value may be +∞ if there is no coupling π such that π � k. However,
since we assumed that ρ > 0, we excluded this case. Similarly to the standard transport case we
now establish existence of dual optimizers.

Proposition 6.5. If µi > 0, νj > 0 and ki,j > 0 for all (i, j) then optimizers of the dual
regularized problem (14) exist.

Proof. • In this proof we use intrinsically finite-dimensional arguments.
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• Let µ⊗ ν ∈ RM×N be the product measure of µ and ν:

(µ⊗ ν)i,j = µi · νj

Then

〈α,µ〉+ 〈β,ν〉 = 〈α⊕ β,µ⊗ ν〉

Thus, (14) can be rewritten as

M−1∑
i=0

N−1∑
j=0

fi,j(αi + βj) where fi,j(z) = z · (µi · νj)− ε[exp(z/ε)− 1] · ki,j

• Each fi,j has compact super-level sets (this is where the assumption of strict positivity is
used) and since there are only a finite number of terms and each component of α ⊕ β is
used by one term, for any minimizing sequence of (14) we can extract a subsequence such
that α⊕ β converges.

• Note that shifting α by adding a constant to each component and simultaneously shifting β
by subtracting the same constant from each component does not change the objective value
of (14). Hence, we may renormalize the minimizing sequence such that always α0 = 0.
Then convergence of α⊕β implies convergence of β and thus eventually also convergence
of α.

The regularized dual problem, (14) is an unconstrained, smooth, convex optimization problem.
This will allow simple optimization (see next section) and a simple relation between primal and
dual optimizers which we establish now.
The following Lemma for convex, lower semi-continuous functions is often useful.

Lemma 6.6. Let X be a Hilbert space and let f be a proper, convex, lower-semicontinuous
function f : X → R ∪ {∞}. Then the Fenchel–Young inequality holds:

f(x) + f∗(y) ≥ 〈x, y〉

Moreover, one has

[y ∈ ∂f(x)]⇔ [f(x) + f∗(y) = 〈x, y〉]⇔ [x ∈ ∂f(y)]

Proof. See, for instance, [Bauschke and Combettes, 2011, Proposition 13.13 and Theorem 16.23].

This leads to the following result on the relation between primal and dual optimizers.

Proposition 6.7. Let X and Y be Hilbert spaces, let f : X → R ∪ {∞}, g : Y → R ∪ {∞} be
proper, convex, lower semi-continuous functions, let A : X → Y be linear and bounded. Assume,
that there is duality between the primal and dual problem

inf {f(x) + g(Ax)|x ∈ X} = sup {−f∗(−A∗y)− g∗(y)|y ∈ Y }

and that the optimal value is finite. Then the following are equivalent:
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(i) x and y are primal and dual optimizers,

(ii) −A∗y ∈ ∂f(x) and y ∈ ∂g(Ax).

Proof. • The proof follows [Bauschke and Combettes, 2011, Theorem 19.1].

(i)⇔ f(x) + g(Ax) = −f∗(−A∗y)− g∗(y)

⇔ f(x) + f∗(−A∗y) + g(Ax) + g∗(y) = 0 = 〈x,−A∗y〉X + 〈Ax, y〉Y

with Fenchel–Young inequality:

⇔ [f(x) + f∗(−A∗y) = 〈x,−A∗y〉X ] ∧ [g(Ax) + g∗(y) = 〈Ax, y〉Y ]

⇔ [−A∗y ∈ ∂f(x)] ∧ [y ∈ ∂g(Ax)]⇔ (ii)

Corollary 6.8. We can apply this to the entropy regularized transport problem. Then

• X = RM × Rn, Y = RM×N ,

• f : (α,β) 7→ − 〈α,µ〉 − 〈β,ν〉, ∂f(α,β) = {∇f(α,β)}, ∇f(α,β) = (−µ,−ν),

• g = εKL∗(·/ε|k), ∂g(φ) = {∇g(φ)} with [∇g(φ)]i,j = exp(φi,j/ε) · ki,j ,

• A(α,β) = α⊕ β, A∗π = (π 1M ,π
>1N ),

and therefore, π and (α,β) are primal and dual optimizers if and only if

• (π 1M ,π
>1N ) = (µ,ν) and

• πi,j = exp((αi + βj)/ε) · ki,j .

Comment: Discuss relation / limit to unregularized problem.

6.3 Sinkhorn algorithm

Now we devise an algorithm to solve the regularized dual problem (14). For convenience, we
introduce a name for the objective:

J : RM × RN → R, (α,β) 7→ 〈α,µ〉+ 〈β,ν〉 − εKL∗(α⊕ β/ε|k)

Since J is smooth, concave and the maximization problem is unconstrained, a necessary and
sufficient optimality condition is a vanishing gradient. We obtain for the gradient of J :

∂J

∂αi
= µi − exp(αi/ε)

N−1∑
j=0

exp(βj/ε)ki,j ,
∂J

∂βj
= νj − exp(βj/ε)

M−1∑
i=0

exp(αi/ε)ki,j .

We need to find a pair (α,β) such that ∇J = 0. We propose to do this in an alternating
fashion. Assume some β(`) ∈ RN is given. For fixed β(`) the optimal α(`+1) can be found by
solving ∂J

∂αi
= 0. Then, for fixed α(`+1) the optimal dual variable β(`+1) can be found by solving

∂J
∂βj

= 0. One obtains:

exp(α(`+1)/ε) =
µ

k exp(β(`)/ε)
, exp(β(`+1)/ε) =

ν

k> exp(α(`+1)/ε)
. (15)
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Here the exponential function and the fraction are understood to act component-wise. The
algorithm becomes particularly simple when one substitutes the variables

u(`) = exp(α(`)/ε), v(`) = exp(β(`)/ε). (16)

One obtains:

u(`+1) =
µ

kv(`)
, v(`+1) =

ν

k>u(`+1)
. (17)

These are the famous Sinkhorn iterations [Sinkhorn, 1964]. With Corollary 6.8 the primal dual
optimality condition then becomes π = diag(u)k diag(v) where diag(u) and diag(v) are the
diagonal matrices with diagonal entries given by u and v respectively.

Proposition 6.9. If k is strictly positive, iterations (15) converge to a solution of the regularized
dual problem (14), up to constant shifts of α and β.

Sketch of proof. • As long as the iterates change, the dual objective is strictly increasing. If
the iterates do not change, by virtue of the first order optimality conditions an optimal
solution is found.

• Since k is strictly positive, the dual objective is bounded from above, and hence, arguing
with compact super-level sets as above, up to constant shifts, one must find a convergent
subsequence.

• Since the map that takes a given iterate (α(`),β(`)) to the subsequent iterate (α(`+1),β(`+1))
is continuous, any cluster point of the iterates must be a fixed point of the iteration and
thus be an optimal dual solution.

Remark 6.10 (Discussion of Sinkhorn algorithm). • Iterations (17) only consist of matrix-
vector multiplications and pointwise division and are thus trivial to implement and paral-
lelize.

• The algorithm works on any cost function c and does not depend on additional theoretical
properties. Some caution is required if c may be infinite.

• As ε→ 0 one approaches the original unregularized transport problem but numerically two
important issues arise: 1) convergence becomes increasingly slow, 2) numerical values in k,
u and v become increasingly small / large and will eventually exceed the computational
numerical range.

• In summary: if one can tolerate (or even wishes) a moderate regularization strength ε > 0
the Sinkhorn algorithm is a good starting point to get numerical results.
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