
Computational optimal transport

Bernhard Schmitzer

Uni Göttingen, winter term 2021, January 19, 2022

1 Introduction

[for some ‘global announcements’ see StudIP]

1.1 Literature

• Gabriel Peyré, Marco Cuturi: Computational Optimal Transport, Foundations and Trends
in Machine Learning, 2019, 11, 355-607, available online: https://optimaltransport.g
ithub.io/book/
Introduction with a focus on computational aspects, avoiding mathematical details.

• Filippo Santambrogio: Optimal Transport for Applied Mathematicians, Birkhäuser Boston,
2015
Introduction aimed at applied mathematicians, ‘harder’ than the other reference, but
maybe more suitable to analytically inclined students.

1.2 Tentative table of contents

• Introduction: Monge and Kantorovich problem, motivation for application in data analysis

• Kantorovich duality

– dual problem, primal-dual optimality conditions

• OT in one dimension

• mini-interlude: measures and weak* convergence

• Wasserstein distances

– triangle inequality, displacement interpolation

• W1 on graphs

– Kantorovich–Rubinstein duality

– equivalence with min-cost-flow problem

• classical algorithms

– Hungarian method

– auction algorithm

1

https://optimaltransport.github.io/book/
https://optimaltransport.github.io/book/

• entropic regularization

– regularized primal and dual

– Sinkhorn algorithm (derivation, epsilon scaling, numerical stability)

• mini-interlude: basics of convex analysis

– subdifferentials, Fenchel–Legendre conjugation

– duality in optimization

• unbalanced transport

• Wasserstein barycenters

• prototypical data analysis / machine learning applications

2 First contact with optimal transport: the principle of least
effort

2.1 Gaspard Monge: piles of sand

• 1746 - 1818, French mathematician, engineer and politician

• prototypical optimal transport problem: sand piles and holes

– µ(x): height of pile at x, ν(y): depth of hole at y, volumes must be equal
∫
X µ(x) dx =∫

Y ν(y) dy

– we want to use the sand to fill the hole in most efficient way

– cost of moving one unit of sand from x to y: c(x, y) (e.g. distance, maybe taking into
account obstacles, difficulty of path,. . .)

– transport map T : X → Y , take grains of sand from x to T (x), requirement: moving
all grains of sand in µ along T must result in distribution ν to fill the hole. For now
think of this intuitively, by splitting µ into small (infinitesimal) grains of sand that
are then moved individually. We will later give a more rigorous definition. We call
the transformation that T induces on µ the ‘push-forward’ and denote it by T]µ.

– total transport cost associated with map T :
∫
X c(x, T (x))µ(x) dx

2

– optimal transport problem according to Monge:

inf

{∫
X
c(x, T (x))µ(x) dx

∣∣∣∣T : X → Y such that T]µ = ν

}
– rigorous mathematical analysis (do minimal T even exist? what properties do they

have?) was not possible at the time. Properly solved only at the end of the 20th
century.

– intuitively, sometimes a map T that satisfies T]µ = ν may not exist. Maybe there are
two grains of sand at x, one needs to go to y1, the other to y2.

2.2 Leonid Kantorovich: cafes in Paris

• 1912 - 1986, Soviet mathematician, inventor of linear programming, his work was applied
to optimization of industrial production efficiency by the Soviet government

• toy problem: bakeries and cafes in Paris = Ω ⊂ R2.

– let (xi)
M
i=1 be locations of bakeries in Ω, each morning, each bakery i produces an

amount µi ≥ 0 of bread

– locations of cafes given by (yj)
N
j=1 in Ω, each morning, each cafe orders amount νj ≥ 0

of bread for sale during the day

– we work for the Parisian bakery-cafe-commission, need to work out which bakery
delivers to what cafes

– total amounts of bread have been coordinated:
∑M

i=1 µi =
∑N

j=1 νj

– as in Monge’s case: cost function c : Ω → Ω, c(x, y) describes how much effort is
required to transport one unit of bread from location x to y.

– problem: transport-map ansatz of Monge will not work. Most bakeries deliver bread
to more than one cafe.

• need new description for bread allocation: transport plan.

3

– intuitively, a big table of size M × N , stored as γ ∈ RM×N+ , where each entry γi,j
specifies, how much bread goes from bakery i to cafe j.

– need to make sure that all bakeries ‘get rid of all their bread’:
∑N

j=1 γi,j = µi for
i = 1, . . . ,M . likewise, each cafe gets the ordered amount of bread:

∑M
i=1 γi,j = νj

for j = 1, . . . , N .

– set of all transport plans

Γ(µ, ν) :=

{
γ ∈ RM×N+

∣∣∣∣∣
N∑
j=1

γi,j = µi for i = 1, . . . ,M,

M∑
i=1

γi,j = νj for j = 1, . . . , N

}

– cost associated with transport plan: 〈c, γ〉 :=
∑M

i=1

∑N
j=1 ci,j ·γi,j where ci,j := c(xi, yj)

are entries of cost matrix

– Kantorovich optimal transport problem: inf {〈c, γ〉|γ ∈ Γ(µ, ν)}
– this is a linear program: γ 7→ 〈c, γ〉 is linear, inequality constraints γi,j ≥ 0 are linear,

‘amount-of-bread’-constraints are linear

– the set Γ(µ, ν) is bounded and non-empty (exercise) ⇒ minimizing γ in Kantorovich
problem exists

• outlook: generalization of Kantorovich problem

– we only considered finite, discrete locations (xi)
M
i=1 and (yj)

N
j=1 with discrete mass

distributions µ and ν

– Kantorovich problem can be generalized to arbitrary measures, e.g. diffuse distribu-
tions of sand as in Monge’s example

– then Γ(µ, ν) becomes a set of measures on the product space Ω2 (or X × Y)

– can also compare discrete distribution (locations of large shops with product reserves,
or schools with teaching capacities) with approximately diffuse distributions such as
locations of customers or pupils

4

2.3 Motivation: applications in data analysis

Example 2.1 (Matching point clouds). see python example 001_PointCloudMatching and notes
on ‘serializing’ the linear program (i.e. transforming minimization over matrix into minimization
over vector) in 2021-04-14_ComputationalOT_sketches.

Example 2.2 (Matching histograms). see doodles in 2021-04-14_ComputationalOT_sketches

5

3 The Kantorovich optimal transport problem

3.1 Primal problem

We state the Kantorovich problem with slightly more formal care than in the previous section.

Probability simplex. Throughout the whole section let M,N ∈ N be fixed. Denote by

ΣM :=

{
µ ∈ RM+

∣∣∣∣∣
M∑
i=1

µi = 1

}
the simplex of discrete probabilities over M points (and likewise use ΣN).

Marginal projection operators. We have seen that the Kantorovich problem is a linear
program and have ‘serialized’ (i.e. transformed the matrix γ into a vector) it in Example 2.1
so that the row and column sums could be written by matrix-vector multiplications. It will be
convenient (and more general) to adopt a slightly more abstract view in the following. Introduce
row-sum operators:

PX : RM×N → RM , (PXγ)i :=
N∑
j=1

γi,j for i = 1, . . . ,M,

PY : RM×N → RN , (PY γ)j :=

M∑
i=1

γi,j for j = 1, . . . , N.

Clearly, both are linear operators. They take a matrix to a vector.

Definition 3.1 (Primal Kantorovich problem). For µ ∈ ΣM , ν ∈ ΣN the set of optimal transport
plans between them is given by

Γ(µ, ν) :=
{
γ ∈ RM×N+

∣∣∣PXγ = µ,PY γ = ν
}
.

For c ∈ RM×N the associated primal Kantorovich optimal transport problem is given by

C(µ, ν) := inf {〈c, γ〉|γ ∈ Γ(µ, ν)} .

Remark 3.2. We have shown that the set Γ(µ, ν) is non-empty, closed and bounded (and
therefore compact). The function γ 7→ 〈c, γ〉 is continuous. Hence, minimal γ exist.

Proposition 3.3 (Restrictions of optimal plans are optimal). Let µ ∈ ΣM , ν ∈ ΣN , γ ∈ Γ(µ, ν)
minimal for C(µ, ν) and γ̃ ∈ RM×N+ with γ̃ ≤ γ (inequality holds for all entries). Set µ̃ = PX γ̃,
ν̃ = PY γ̃. Then γ̃ is optimal for C(µ̃, ν̃).

Proof in exercise.

6

Proposition 3.4 (Convexity of optimal total cost). The function ΣM × ΣN 3 (µ, ν) 7→ C(µ, ν)
is convex.

Proof. • Let µ0, µ1 ∈ ΣM , ν0, ν1 ∈ ΣN . Let γ0, γ1 be corresponding optimal plans.

• For λ ∈ [0, 1] set

µ̃ := (1− λ) · µ0 + λ · µ1, ν̃ := (1− λ) · ν0 + λ · ν1, γ̃ := (1− λ) · γ0 + λ · γ1.

• It is clear that (µ̃, ν̃) ∈ ΣM × ΣN . Need to show that

C(µ̃, ν̃) ≤ (1− λ) · C(µ0, ν0) + λ · C(µ1, ν1).

• Show first that γ̃ ∈ Γ(µ̃, ν̃): By construction γ̃ ≥ 0. Check row sums:

PX γ̃ = PX [(1− λ) · γ0 + λ · γ1] = (1− λ) · PXγ0 + λ · PXγ1 = (1− λ)µ0 + λµ1 = µ̃.

Here we used linearity of PX . Column sums follow analogously.

• Consequently:

C(µ̃, ν̃) ≤ 〈c, γ̃〉 = (1− λ) 〈c, γ0〉+ λ 〈c, γ1〉 = (1− λ) · C(µ0, ν0) + λ · C(µ1, ν1).

Remark 3.5 (Consequences). Important for subsequent results. Convex functions are ‘almost
differentiable’ (sub-differentiable, more details later) and have only global minimizers. C(µ, ν)
can be used as building block in more complicated problems, and by convexity we still have a
chance to solve them numerically.

3.2 Dual problem

Heuristic derivation of the dual problem.
Step 1: Lagrangian (mini-recap).

• Assume we want to solve

min
x∈Rn

f(x) subject to g(x) = 0

for some (differentiable) f : Rn → R, g : Rn → R.

• Necessary optimality condition for minimizer x: ∇f(x) orthogonal to feasible set {x′ ∈
Rn|g(x′) = 0} at x.

7

• Normal vector given by ∇g(x), so ∇f(x) = λ · ∇g(x) for some λ ∈ R. λ is called Lagrange
multiplier.

• Introduce Lagrangian L(x, λ) := f(x) + λ · g(x). Then necessary optimality condition:
∇xL(x, λ) = 0 for some λ ∈ R. (Will not hold in our case, since our f is not differentiable.)

• In addition, at minimizer have 0 = g(x) = ∇λL(x, λ).

• Alternative interpretation: λ · g(x) is a penalty term for the constraint. Write constrained
minimization as

inf
x∈Rn

sup
λ∈R

f(x) + λ · g(x)

Intuitively, whenever g(x) 6= 0, the ‘inner’ supremum will yield +∞, so the ‘outer’ infimum
must obey the constraint.

• In general have infx supλ L(x, λ) ≥ supλ infx L(x, λ).

• In special cases: have equality, will lead to dual problem. (More details later.)

• Lagrangian for Kantorovich problem: Have M + N equality constraints: row and column
sums. So need M +N Lagrange multipliers. Call them α ∈ RM and β ∈ RN . Lagrangian
given by

L(γ, α, β) := 〈c, γ〉+ 〈α, µ− PXγ〉+ 〈β, ν − PY γ〉

(We will handle the non-negativity constraint of γ separately (which is why we cannot
merely consider the derivative ∇γL.)

Step 2: adjoint operators.

• Recall: PX is linear operator RM×N → RM . ⇒ there will be an adjoint operator P∗X from
RM to RM×N such that

〈α,PXγ〉 = 〈P∗Xα, γ〉

for all α ∈ RM , γ ∈ RM×N where from now on 〈·, ·〉 denotes the Euclidean inner product
in any finite-dimensional Euclidean vectors space.

• Usually, if PX is a matrix, the adjoint is simply given by transpose matrix. But we want
to avoid serialization. (Notion of adjoint also generalizes naturally to infinite-dimensional
setting.)

• Determine explicit expression for adjoint:

〈P∗Xα, γ〉 = 〈α,PXγ〉 =
M∑
i=1

αi · (PXγ)i =
M∑
i=1

N∑
j=1

αi · γi,j =
M∑
i=1

N∑
j=1

(P∗Xα)i,j · γi,j

so (P∗Xα)i,j = αi.

• Likewise: (P∗Y β)i,j = βj .

• Now re-write Lagrangian:

L(γ, α, β) := 〈c, γ〉+ 〈α, µ− PXγ〉+ 〈β, ν − PY γ〉
= 〈c, γ〉+ 〈α, µ〉 − 〈P∗Xα, γ〉+ 〈β, ν〉 − 〈P∗Y β, γ〉

8

Step 3: minimax theorem.

• Constrained formulation with Lagrangian:

C(µ, ν) = inf
γ∈RM×N

+

sup
α,β∈RM ,RN

〈α, µ〉+ 〈β, ν〉+ 〈c− P∗Xα− P∗Y β, γ〉

• Now assume/pretend that we may flip order of infimum and supremum. This is usually
allowed by using so-called minimax theorems. Here it can be deduced rigorously from
duality of finite-dimensional linear programs. We will later provide another argument.
With this get:

C(µ, ν) = sup
α,β∈RM ,RN

〈α, µ〉+ 〈β, ν〉+

[
inf

γ∈RM×N
+

〈c− P∗Xα− P∗Y β, γ〉

]

This looks like a Lagrangian where α, β are the variables and γ is the Lagrange multiplier.

• Since γ ≥ 0, we will find it is a multiplier for inequality constraints: If

(c− P∗Xα− P∗Y β)i,j = ci,j − αi − βj < 0

for some i, j, then by sending γi,j →∞ we can send the inner infimum to −∞.

• If (. . .)i,j ≥ 0, then γi,j → 0. Summarize:

inf
γ∈RM×N

+

〈c− P∗Xα− P∗Y β, γ〉 =

{
0 if c− P∗Xα− P∗Y β ≥ 0,

−∞ else.

• Hence, for the outer supremum, the infimum acts as a constraint. Can now state dual
problem.

Proposition 3.6 (Dual Kantorovich problem).

C(µ, ν) = sup
{
〈α, µ〉+ 〈β, ν〉

∣∣∣α ∈ RM , β ∈ RN ,

αi + βj ≤ ci,j for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}
}

Proof follows rigorously from duality for finite-dimensional linear programs (or with methods
introduced later in lecture).

Corollary 3.7.

• Let γ ∈ Γ(µ, ν), (α, β) ∈ (RM ,RN), P∗Xα+ P∗Y β ≤ c. Then have:

〈c, γ〉 ≥ C(µ, ν) ≥ 〈α, µ〉+ 〈β, ν〉

with equality if and only if γ and (α, β) are primal-dual optimal.

• 〈c, γ〉− 〈α, µ〉− 〈β, ν〉 is called the primal-dual gap and it is a bound on the sub-optimality
of γ and (α, β).

9

Proposition 3.8. Let γ ∈ Γ(µ, ν), (α, β) dual feasible (i.e. P∗Xα + P∗Y β ≤ c). Then they are
primal and dual optimal if and only if for all i, j one has

[γi,j > 0] ⇒ [αi + βj = ci,j].

Proof. • [γ, (α, β) both optimal] ⇔ [primal-dual gap is zero] ⇔

0 = 〈c, γ〉 − 〈α, µ〉 − 〈β, ν〉 = 〈c, γ〉 − 〈α,PXγ〉 − 〈β,PY γ〉 = 〈c− P∗Xα− P∗Y β︸ ︷︷ ︸
≥0

, γ〉

where the last expression is therefore zero if and only if ci,j = αi + βj for all i, j where
γi,j > 0.

Looking at dual problem, note that µ ≥ 0, ν ≥ 0. If we fix some α and only try to maximize
over β, then we want to make each entry as large as the constraint allows, and likewise for fixed
β and maximizing over α. Introduce notation for this ‘partial maximization’.

Definition 3.9 (c-transform). For α ∈ RM and β ∈ RN introduce αc ∈ RN and βc via

αcj := min
i
ci,j − αi, βci := min

j
ci,j − βj .

We call these the c-transforms of α and β (added overline in second one, since they are not
strictly identical).

Remark 3.10. Now let us establish the existence of dual maximizers. This is not entirely trivial,
since the dual feasible set is unbounded. Indeed, let (α, β) be dual feasible. Then for any λ ∈ R
have that

(αi + λ) + (βj − λ) = αi + βj ≤ ci,j

and thus (α+ λ, β − λ) is also dual feasible, and has the same dual objective:

〈α+ λ, µ〉+ 〈β − λ, ν〉 = 〈α, µ〉+ 〈β, ν〉+ λ ·

 M∑
i=1

µi −
N∑
j=1

νj

︸ ︷︷ ︸

=0

We therefore need to show that we can restrict maximization to a bounded (and thus compact)
subset of the dual feasible set. This can be done with the c-transform.

Lemma 3.11. Let β ∈ RN , α := βc. Then

max
i
αi −min

i
αi ≤ 2‖c‖∞

where ‖c‖∞ := maxi,j |ci,j |.

Proof. • Introduce B := maxj βj .

• Then for all i:
αi = min

j
ci,j︸︷︷︸

≥−‖c‖∞

− βj︸︷︷︸
≤B

≥ −‖c‖∞ −B

10

• Likewise, by picking some j′ such that B = βj′ have

αi = min
j
ci,j − βj ≤ ci,j′ − βj′ ≤ ‖c‖∞ −B

• These two bounds now obviously also hold for the maximal and minimal value of α. To-
gether get:

max
i
αi︸ ︷︷ ︸

≤‖c‖∞−B

− min
i
αi︸ ︷︷ ︸

≥−‖c‖∞−B

≤ 2‖c‖∞

Proposition 3.12. Dual maximizers exist.

Proof. • Recall dual problem:

C(µ, ν) = sup
{
〈α, µ〉+ 〈β, ν〉

∣∣∣α ∈ RM , β ∈ RM ,

αi + βj ≤ ci,j for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}
}

• For every feasible candidate have that αc ≥ β and βc ≥ α:

αcj = min
i
ci,j − αi︸ ︷︷ ︸
≥βj

• So replacing β by αc, and then α by βc = (αc)c will not give a worse score.

• So we can constrain maximization to variables that can be written as c-transforms.

• By previous Lemma can confine maximization over α to those that satisfy

max
i
αi −min

i
αi ≤ 2‖c‖∞.

• As discussed in Remark 3.10 we can add a constant λ ∈ R to α, while subtracting it from
β and still have dual candidates, with the same score. Thus we can impose the additional
constraint mini αi = 0. And so entries of α must lie between 0 and 2‖c‖∞.

• Simple similar argument: β can be constrained to lie between ‖c‖∞ and −3‖c‖∞.

• A feasible candidate is given by αi = 0, βj = −‖c‖∞. Thus the feasible set is non-empty.

• Objective (α, β) 7→ 〈α, µ〉+ 〈β, ν〉 is continuous.

• Maximization of continuous function over compact, non-empty set has a maximizer.

Proposition 3.13 (Limits of optimal primal and dual solutions are optimal).

• Let (µn)n and (νn)n be sequences in ΣM and ΣN with limits µ ∈ ΣM and ν ∈ ΣN .

• Let (γn)n be a sequence of corresponding primal minimizers and let (αn, βn)n be a sequence
of dual maximizers.

11

• Then there is a subsequence (nk)k such that

lim
k→∞

γnk
= γ, lim

k→∞
αnk

= α, lim
k→∞

βnk
= β

for suitable limits γ ∈ RM×N , α ∈ RM and β ∈ RN which are primal and dual optimizers
of the limit problems between the limits µ and ν.

Remark 3.14. Two main motivations:

• First: stability. If the marginals µ and ν change a little bit, it is possible to also only
change γ a little bit to keep it optimal.

• Second: numerical approximation. Assume M and N are very large. We can approximate
the original µ and ν by increasingly more non-zero entries (every zero entry simplifies
numerical solution of the problem, because we can remove the row or column from γ) and
get increasingly better approximations of an optimal γ.

Proof of Proposition 3.13. • The sequence of optimal (γn)n is bounded (all entries lie be-
tween 0 and 1).

• Arguing as in the proof of Proposition 3.12 we can shift the sequence of dual maximizers
until all their entries lie in [−3‖c‖∞, 2‖c‖∞]. Hence the sequence of dual maximizers is also
bounded.

• By Bolzano–Weierstrass there exists a subsequence (nk)k and limits γ ∈ RM×N , α ∈ RM
and β ∈ RN such that each subsequence converges to the respective limit.

• Now let us see that the limits are still feasible for the primal and dual problems.

• The set RM×N+ is closed. Hence γn ∈ RM×N+ for all n implies that also the limit γ lies in
this set.

• The operator PX is linear and thus continuous (in finite dimensions). Therefore:

PXγ = PX(lim
k
γnk

) = lim
k

PXγnk
= lim

k
µnk

= µ

The same argument applies for the second marginal. Hence γ ∈ Γ(µ, ν).

• The Euclidean inner product is continuous. Hence 〈c, γnk
〉 → 〈c, γ〉.

• Therefore:

C(µ, ν) = inf
γ′∈Γ(µ,ν)

〈
c, γ′

〉
≤ 〈c, γ〉 = lim

k
〈c, γnk

〉 = lim
k
C(µnk

, νnk
)

• Now, dual feasibility: The set S = {ψ ∈ RM×N |ψ ≤ c} is closed.

• We have that the sequence ψn := P∗Xαn + P∗Y βn lies in S.

• By continuity of the operators P∗X and P∗Y , we have

ψ := P∗Xα+ P∗Y β = lim
k

P∗Xαnk
+ P∗Y βnk

= lim
k
ψnk

and thus ψ ∈ S. So α and β are dual feasible.

12

• Again, the dual objective (α, β, µ, ν) 7→ 〈α, µ〉 + 〈β, ν〉 is continuous (simultaneously in
dual variables and marginals). So:

C(µ, ν) = sup
(α′,β′):

dual feasible

〈
α′, µ

〉
+
〈
β′, ν

〉
≥ 〈α, µ〉+ 〈β, ν〉

= lim
k
〈αnk

, µnk
〉+ 〈βnk

, νnk
〉 = lim

k
C(µnk

, νnk
).

• Combining upper and lower bound we get C(µ, ν) = limk C(µnk
, νnk

) and thus γ and (α, β)
must be primal and dual optimal.

Remark 3.15. The proposition can easily be adapted to account for a sequence of cost functions
(cn)n with cn → c for some limit cost c ∈ RM×N .

13

4 Mini-introduction: Measures and weak convergence

Non-negative measures.

• Piles of sand: mass is distributed over continuum, µ(x): density of mass at point x, mass
in region A ⊂ X given by

∫
A µ(x) dx. The mass located at any single point x is zero.

• Bakeries and cafes: mass is concentrated on a discrete set of points, µi is mass at single
point xi, density would be +∞.

• Both can also be seen as limits of each other:

– If the pile of sand is very high and concentrated on a small region, if we look at it on
a map, it may seem as a single point.

– Conversely, if we look at the large number of cafes in Paris, it may be impractical
to consider each individually and therefore compute an approximate ‘cafe-density’ or
‘bread-density’ over each block of buildings.

• Both concepts can be described in a mathematically unified way by means of measures.

• A (non-negative) measure on X is a function from subsets of X to R ∪ {∞} that satisfies
certain axioms which are consistent with the notion of mass or volume:

– non-negative

– µ(∅) = 0

– σ-additivity: µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for a sequence of pairwise disjoint sets (Ai)i.

The fact that (countable) infinite sequences of sets are allowed in the last part is important
for technical reasons.

• Denote by M+(X) the (non-negative) measures over X, the probability measures by
P(X) := {µ ∈M+(X) |µ(X) = 1}.

Measurable sets. Another technical aspect: measures are not necessarily defined for all sub-
sets A ⊂ X. By choosing very sophisticated, evil sets, one can arrive at very counter-intuitive
situations such as the Banach–Tarski paradox which showed that a sphere in three dimensions
can be decomposed into a finite number of sets, which can then be shifted to form two spheres.
So the intuitive notion of volume is violated. To allow for such an intuitive notion of volume,
measures can only be defined on a sub-family of sets, which are called ‘measurable’ sets. The
set of measurable sets must of course be closed under standard operations such as intersection,
union, taking the closure or interior, et cetera. Sets that are not measurable for the Lebesgue
measure cannot be constructed explicitly. Their existence can only be shown via the infamous
axiom of choice. Measurability will not be an issue for us.

Example 4.1 (Some examples).

• Lebesgue measure in 1d, denoted by L: assigns b − a to intervals [a, b] where a ≤ b, this
fully characterizes the measure on all measurable sets. Generalization to higher dimensions
works via the assignment of volumes to cuboids.

14

• Scaled Lebesgue measure: if f is a (sufficiently regular) function R → R+, then one can
use it to re-scale the Lebesgue measure by the rule

(f · L)(A) :=

∫
A
f(x) dL(x)

for measurable A ⊂ R. In the Monge-example, f would be the height of the sand pile at
each point. Prominent example: Gaussian distribution with mean z and standard deviation
σ has density

f(x) :=
1√
2πσ

exp
(
− (x−z)2

2σ2

)
.

• Dirac measure: for x ∈ X, the Dirac measure over X at point x is defined as

δx(A) :=

{
1 if x ∈ A
0 otherwise.

• Measures can be combined by summing and scaling. The distribution of bread in bakeries
could be written as µ :=

∑M
i=1 µi ·δxi , where now µ denotes the whole measure and (µi)i are

the mass-coefficients for the individual locations. We can also combine (scaled) Lebesgue
measure with Dirac measures, et cetera.

Signed measures.

• Measures can also assign negative values (or even vector values), as long as we can rule out
inconsistencies that could arise by adding +∞ and −∞ in the additivity-rule. In the easiest
case, we simply demand that a signed measure is the sum (difference) of two non-negative
measures with bounded total mass.

• Example: charge density in physics.

• Denote set of signed measures byM(X)

• We can assign a norm to (signed) measures by summing up the (absolute values of the)
total positive mass and the total negative mass. Denote the norm by ‖ · ‖M. This yields a
Banach space.

Integration.

• For a given measure, we can integrate functions against it, e.g. write
∫
X f(x) dµ(x)

• If µ = δz, then
∫
X f(x) dµ(x) = f(z). So if we change f in a single point, the value of the

integral changes.

• Conversely, if µ = L, if we change f in a single point, the integral does not change.

15

Measures and continuous functions.

• Let X be a compact (closed, bounded) subset of Rd. Then the set of continuous functions
X → R, denoted by C(X), is a vector space. It is a Banach space when equipped with the
norm

‖f‖∞ := sup
x∈X
|f(x)| for f ∈ C(X).

• A finite measure µ ∈ M(X) induces a linear map from continuous functions to R by
C(X) 3 f 7→

∫
X f(x) dµ(x).

• This map is bounded in the following sense:
∣∣∫
X f(x) dµ(x)

∣∣ ≤ ‖f‖∞ · ‖µ‖M. So if the
function goes to zero, so will the integral (with a uniform bound on the rate).

• One can show: any bounded linear map from C(X) to R can be expressed as integration
against some measure inM(X) (Riesz representation theorem).

• This means: two measures µ, ν ∈ M(X) are identical if and only if their integral against
all functions in C(X) is the same, i.e.∫

X
f dµ =

∫
X
f dν for all f ∈ C(X).

• Comparing measures by integration against continuous ‘test functions’ is sometimes more
convenient than comparing their values on all measurable sets.

Weak* convergence.

• Now consider sequence of measures (µn)n with µn := δxn where sequence of points (xn)n
converges to some x (but xn 6= x for all n). Intuitively, we see that µn converges to µ := δx
in some sense. The mass moves to the right limit location, even though it never really
reaches it.

• But: µn − µ = δxn − δx and so ‖µn − µ‖M = 2. So the convergence is not in the norm.

• Similar example: let µn := fn · L with fn(x) := 1√
2πσn

exp
(
− (x−z)2

2σ2
n

)
where (σn)n is a

sequence of variances with σn > 0, σn → 0 as n → ∞. Then intuitively, µn converges to
µ := δz in some sense, but not in norm since ‖µn − δz‖M = 2 for all n. The Gaussians
become increasingly concentrated, in the limit all the mass will sit at z.

• In both examples we find: for any continuous function f ∈ C(X) (X bounded, closed
subset of Rd) one has

lim
n→∞

∫
X
f dµn =

∫
X
f dµ.

16

• This is a suitable notion of convergence for our (and most numerical / engineering) pur-
poses. We say the sequence µn ∈M(X) converges weak* to µ if the integrals converge for
each f ∈ C(X).

Push-forward.

• In Monge example we discussed the transformation that a map T : X → Y can induce on
a measure µ ∈ M+(X) by (intuitively) picking up all the small mass atoms of µ at each
x ∈ X and dropping them at T (x) ∈ Y .

• Now we can formalize this definition. The push-forward of µ under T is a measure in
M+(Y) denoted by T]µ, which is given by (T]µ)(A) := µ(T−1(A)) for all (measurable)
A ⊂ Y . Here T−1(A) := {x ∈ X |T (x) ∈ A} is the pre-image of A under T .

• Intuitively: (T]µ)(A) contains the mass of µ on all points x that are taken to A under T .

• The push-forward can also be characterized by integration with continuous functions:∫
Y
f(y) d(T]µ)(y) =

∫
X
f(T (x)) dµ(x) for all f ∈ C(Y)

This is called the change-of-variables formula.

Transport plans as measures and Kantorovich primal.

• Let µ ∈ P(X), ν ∈ P(Y). A transport plan will now be a measure γ ∈ M+(X × Y).
γ(A×B) describes mass that goes from A ⊂ X to B ⊂ Y .

• What are row sums? Mass that goes from A ⊂ X to any point in Y (which is γ(A × Y))
has to equal total available mass in A (which is µ(A)). So:

γ(A× Y) = µ(A) for all (measurable) A ⊂ X.

17

Same for column sums.

• Let pX : X × Y → X, (x, y) 7→ x. Find: pX]γ(A) = γ(p−1
X (A)) = γ(A × Y). Formally

define row sum operator: PXγ := pX]γ. Same for column sums.

• So set of transport plans can be written as

Γ(µ, ν) := {γ ∈M+(X × Y) |PXγ = µ, PY γ = ν} .

• General formulation of Kantorovich primal:

C(µ, ν) := inf

{∫
X×Y

c(x, y) dγ(x, y)

∣∣∣∣ γ ∈ Γ(µ, ν)

}
Kantorovich dual.

• Dual is given by:

C(µ, ν) = sup

{∫
X
α(x) dµ(x) +

∫
Y
β(y) dν(y)

∣∣∣∣∣α ∈ C(X), β ∈ C(Y),

α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ X × Y

}

• Sketch of derivation: Slight generalization of the discrete derivation.

• Equality of measures can be tested by integration against continuous functions. So the
Lagrange multipliers for row and column sums become functions in C(X) and C(Y). La-
grangian saddle point problem:

inf
γ∈M+(X×Y)

sup
α∈C(X),
β∈C(Y)

∫
X×Y

c dγ +

(∫
X
α dµ−

∫
X
α d(PXγ)

)
+

(∫
Y
β dν −

∫
Y
β d(PY γ)

)

• Now use notion of adjoint operator: PX : M(X × Y) → M(X), define adjoint P∗X :
C(X)→ C(X × Y) by condition∫

X×Y
(P∗Xα)(x, y) dγ(x, y) :=

∫
X
α(x) d(PXγ)(x) =

∫
X
α(x) d(pX]γ)(x)

=

∫
X
α(pX(x, y)) dγ(x, y)

So in analogy to discrete case: (P∗Xα)(x, y) = α(x).

18

• As before, assume we can flip the order of inf and sup:

sup
α∈C(X),
β∈C(Y)

∫
X
α dµ+

∫
Y
β dν + inf

γ∈M+(X×Y)

∫
X×Y

(c− P∗Xα− P∗Y β) dγ

• Intuitively: inf-term becomes inequality constraint:

0 ≤ (c− P∗Xα− P∗Y β)(x, y) = c(x, y)− α(x)− β(y) for all (x, y) ∈ X × Y

Generalization. All of the previous statements can be subsumed into the new case by using
discrete measures. All of the statements in this lecture can be proved for the measure setting.
The arguments are often almost the same, sometimes slightly trickier.

19

5 Wasserstein spaces

5.1 Wasserstein metric

Definition 5.1 (Metric). A metric on a set X is a function d : X ×X → R+ that satisfies:

• [d(x, y) = 0] ⇔ [x = y] (separates objects)

• d(x, y) = d(y, x) (symmetry)

• d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

for all x, y, z ∈ X.

Remark 5.2.

• A metric formalizes the natural notion of distances. Metrics are ubiquitous in mathematics.
Norms in vector spaces induce metrics: d(x, y) = ‖x− y‖.

• In data science a metric can be used to express similarity between samples. To be of
practical use, the metric must be well-suited for the problem at hand.

• As shown in Example 2.2 (Problem sheet 2), the L1-norm ‖ · ‖1 is not a very robust metric
for histograms. Optimal transport can induce a more meaningful family of metrics. These
are the so-called Wasserstein distances.

Proposition 5.3 (Wasserstein distances). Let X = {x1, . . . , xM}, d : X ×X → R+ a metric on
X, p ∈ [1,∞). Then for µ, ν ∈ P(X) ≡ ΣM , set

Wp(µ, ν) := inf

M∑
i,j=1

d(xi, xj)
p γi,j

∣∣∣∣∣∣γ ∈ Γ(µ, ν)

1/p

.

The function Wp : P(X) × P(X) → R+ is called the p-Wasserstein distance on P(X) and it is
indeed a metric on P(X).

Proof that Wp is a metric.
Part 0: Wp(µ, ν) ≥ 0

• In the following denote ci,j = d(xi, xj)
p.

• This follows directly from γ ≥ 0 and ci,j ≥ 0. So 〈c, γ〉 ≥ 0 for all γ ∈ Γ(µ, ν) and
consequently also the infimum / minimum is non-negative.

Part 1: Symmetry Wp(µ, ν) = Wp(ν, µ)

• Let γ ∈ Γ(µ, ν). We find γ> ∈ Γ(ν, µ) (rows and columns exchanged). And since c> = c
(since d is symmetric), have 〈c, γ>〉 = 〈c, γ〉. So from each γ ∈ Γ(µ, ν) can construct one
in Γ(ν, µ) with same objective value (and vice versa). So both problems have the same
infimal value.

Part 2: Separation [Wp(µ, ν) = 0] ⇔ [µ = ν]

20

• ⇐: If µ = ν, then γi,j = µi · δi,j is a valid coupling in Γ(µ, ν = µ). We find

M∑
i,j=1

ci,j γi,j =
M∑
i,j=1

ci,j µi δi,j =
M∑
i

ci,i µi = 0

• But since ci,j ≥ 0 we must have Wp(µ, ν) ≥ 0 (which is also a requirement for a metric)
and therefore this γ must be minimal and we have Wp(µ, µ) = 0.

• ⇒: Assume Wp(µ, ν) = 0, let γ ∈ Γ(µ, ν) be optimal transport plan (for existence see
Remark 3.2). Since ci,j ≥ 0 with [ci,j = 0]⇔ [i = j] we must have that [γi,j > 0]⇒ [i = j].

• Therefore, γ can be written as γi,j = ρi · δi,j for some ρ ∈ RM+ (or even ΣM). Row and col
sum constraints yield ρi = µi = νi for i = 1, . . . ,M . Therefore, µ = ν.

Part 3: Triangle inequality

• Let µ, ν, ρ ∈ P(X). Let γ ∈ Γ(µ, ν) and λ ∈ Γ(ν, ρ) be optimal plans for Wp(µ, ν) and
Wp(ν, ρ).

• Now we glue them together: γ describes rearrangement of mass from µ to ν, λ describes
rearrangement from ν to ρ. Together, they should be able to describe a rearrangement
from µ to ρ.

• We introduce a table η ∈ RM×M×M+ where ηi,j,k will denote the amount of mass traveling
from i via j to k.

• For j ∈ {1, . . . ,M} with νj > 0, interpret λj,k/νj as conditional probability that particle
arriving at j continues to travel to k. Combine this with influx from i to j, described by
γ and set

ηi,j,k :=

{
γi,j λj,k
νj

if νj > 0,

0 else.

21

• Quickly verify:
∑M

i=1 ηi,j,k = λj,k,
∑M

k=1 ηi,j,k = γi,j . Total mass of η equals total mass of
γ, λ, equals 1.

• Extract transport plan from µ to ρ by summing over j in ηi,j,k: τi,k :=
∑M

j=1 ηi,j,k. Find
τ ∈ Γ(µ, ρ). For example:

M∑
k=1

τi,k =
M∑
j=1

M∑
k=1

ηi,j,k =
M∑
j=1

γi,j = µi

• Now plug τ into problem for Wp(µ, ρ) to obtain upper bound:

Wp(µ, ρ) ≤

 M∑
i,k=1

d(xi, xk)
p τi,k

1/p

=

 M∑
i,j,k=1

d(xi, xk)
p ηi,j,k

1/p

≤

 M∑
i,j,k=1

d(xi, xk)
p︸ ︷︷ ︸

≤(d(xi,xj)+d(xj ,xk))p

ηi,j,k

1/p

≤

 M∑
i,j,k=1

d(xi, xj)
p ηi,j,k

1/p

+

 M∑
i,j,k=1

d(xj , xk)
p ηi,j,k

1/p

=

 M∑
i,j=1

d(xi, xj)
p γi,j

1/p

+

 M∑
j,k=1

d(xj , xk)
p λj,k

1/p

= Wp(µ, ν) +Wp(ν, ρ).

• Here we have used the Minkowski inequality: For µ ∈ ΣM , f, g ∈ RM have(
M∑
i=1

|fi + gi|pµi

)1/p

≤

(
M∑
i=1

|fi|pµi

)1/p

+

(
M∑
i=1

|gi|pµi

)1/p

.

Example 5.4 (Dirac measures).

• Let µ := δxi , a Dirac measure at xi, or equivalently µk := δi,k for k = 1, . . . ,M with
Kronecker-delta notation. And ν := δxj .

• Then a quick computation yields Γ(µ, ν) = {δ(xi,xj)}. There is only a single transport plan.
All mass from xi must go to xj .

• Therefore: Wp(δxi , δxj) = d(xi, xj).

• So the Wasserstein metric, restricted to Dirac measures, equals the original metric over
single points. The Wasserstein metric can be seen as a lifting / extension of the original
metric from Dirac measures to general probability measures.

Example 5.5 (Rearranging a bookshelf).

Remark 5.6 (Wasserstein distances metrize weak* convergence). On a compact metric space
(X, d) a sequence of probability measures (µn)n converges to some limit µ if and only ifWp(µn, µ)
→ 0 for n→∞. Slightly more attention must be paid on non-compact spaces.

22

5.2 Displacement interpolation

Remark 5.7.

• More generally as in Section 5.1, Wasserstein distances can be defined for general proba-
bility measures on (bounded) subsets X ⊂ Rd.

• If X is convex, then there are even shortest paths. This means, for two probabilities
µ0, µ1 ∈ P(X), there is a curve [0, 1] 3 t 7→ µ(t) with µ(0) = µ0, µ(1) = µ1 that satisfies

Wp(µ(s), µ(t)) = |s− t| ·Wp(µ0, µ1) for s, t ∈ [0, 1].

• This is essentially brand new mathematics: these curves were introduced in the 1990s.1

Proposition 5.8. Let X ⊂ Rd be closed, bounded, and convex. Let µ =
∑M

i=1 µi · δxi , ν =∑N
j=1 νj ·δyj be two discrete probability measures onX and let γ ∈ Γ(µ, ν) ⊂ RM×N+ be an optimal

transport plan between µ and ν for the p-Wasserstein distance problem for some p ∈ [1,∞). For
t ∈ [0, 1] set

ρ(t) :=

M∑
i=1

N∑
j=1

γi,j · δzi,j(t) with zi,j(t) := (1− t) · xi + t · yj .

Then [0, 1] 3 t 7→ ρ(t) is a shortest curve between µ and ν in P(X) with respect to the p-
Wasserstein distance.

1R. McCann: A Convexity Principle for Interacting Gases, Advances in Mathematics 128, pages 153–179, 1997

23

Proof.

• ρ(t) can be interpreted as (non-negative) vector in RM×N+ . Transport plans between µ and
ρ(t) will live in RM×(M×N)

+ where γ̂i,(j,k) denotes the mass that is sent from xi to zj,k(t).

• Claim: A feasible transport plan γ̂ ∈ Γ(µ, ρ(t)) is given by γ̂i,(j,k) := δi,j · γi,k.

• Column sums:

M∑
j=1

N∑
k=1

γ̂i,(j,k) =
M∑
j=1

N∑
k=1

δi,j · γi,k =
N∑
k=1

γi,k = µi

• Row sums:

M∑
i=1

γ̂i,(j,k) =
M∑
i=1

δi,j · γi,k = γj,k

• What cost is associated with γ̂? The corresponding cost is given by

ĉi,(j,k) := ‖xi − zj,k(t)‖p = ‖xi − (1− t)xj + t yk‖p

Note that γ̂i,(j,k) > 0 ⇒ i = j. So it is sufficient to look at the corresponding entries of the
cost only. We find:

ĉi,(i,k) = tp · ‖xi − yk‖p.

• Now plug γ̂ into objective for Wp(µ, ρ(t)). This gives an upper bound:

Wp(µ, ρ(t)) ≤

(
M∑
i=1

N∑
k=1

ĉi,(i,k) · γ̂i,(i,k)

)1/p

=

(
M∑
i=1

N∑
k=1

tp · ‖xi − yk‖p · γi,k

)1/p

= t ·Wp(µ, ν)

• By same argument show Wp(ρ(t), ν) ≤ (1− t) ·Wp(µ, ν).

• Now use triangle inequality:

Wp(µ, ν) ≤Wp(µ, ρ(t)) +Wp(ρ(t), ν) ≤ [t+ (1− t)] ·Wp(µ, ν)

So both inequalities for Wp(µ, ρ(t)) and Wp(ρ(t), ν) must be equalities. So the coupling γ̂
constructed above must be optimal.

• Could now re-use same argument to show that γ̂(i,j),(k,l) := δi,k ·δj,l ·γi,j is optimal between
ρ(s) and ρ(t) for s, t ∈ [0, 1]. Finally arrive at Wp(ρ(s), ρ(t)) = |s− t| ·Wp(µ, ν).

24

6 1-Wasserstein problems on graphs

Remark 6.1 (Motivation).

• Kantorovich optimal transport problem between µ ∈ ΣM , ν ∈ ΣN has M · N primal
variables, run-time of standard linear solvers is (empirically) polynomial in number of
variables (e.g. cubic). If M = N ≈ 106 (representing a mega-pixel image), then M ·N ≈
1012 and applying a standard linear solver will be problematic both in terms of run-time
and memory.

• If (X = Y, d) is a metric graph (e.g. a grid graph) with O(M = N) edges, we will find
that the W1 problem on (X, d) can be written as ‘flow problem’ on the graph with O(M)
variables and constraints, hence reducing the complexity.

• In some models p > 1 (mostly p = 2) is more natural (discussion will follow), but in some
cases p = 1 is exactly what is needed.

6.1 Kantorovich–Rubinstein duality

Definition 6.2 (Metric space and 1-Lipschitz functions).

• Let X = Y = {x1, . . . , xM} be a metric space with metric d : X ×X → R+.

• A function α : X → R is 1-Lipschitz if for any x, y ∈ X one has |α(x)− α(y)| ≤ d(x, y).

• Denote the set of 1-Lipschitz functions over X by Lip1(X).

Remark 6.3 (c-transform for metric cost). Set c = d. Recall c-transform:

αc(x) := min
z
c(x, z)− α(z)

In this case do not need ‘reverse transform’ αc since c is symmetric.

Lemma 6.4.

• If β = αc for some α ∈ RX , then β is 1-Lipschitz.

• If α is 1-Lipschitz, then β = αc = −α.

• Therefore, set of functions on X that can be written as αc for some α : X → R is precisely
Lip1(X).

Proof.

• Part 1: Let x, z ∈ X.

β(x) = min
y∈X

d(x, y)︸ ︷︷ ︸
≤d(x,z)+d(z,y)

−α(y) ≤ d(x, z) + β(z)

• Swap roles of x and z to get β(z) ≤ d(x, z) + β(x). Combine both inequalities to get
|β(x)− β(z)| ≤ d(x, z).

25

• Part 2: Let x ∈ X.

β(x) = min
y∈X

d(x, y)− α(y) ≤ −α(x) (set y = x in min)

β(x) = min
y∈X

d(x, y)− α(y)︸︷︷︸
≤α(x)+d(x,y)

≥ min
y∈X

d(x, y)− α(x)− d(x, y) = −α(x)

Proposition 6.5 (Kantorovich–Rubinstein formula).

W1(µ, ν) = sup {〈ϕ, µ− ν〉|ϕ ∈ Lip1(X)}

Proof.

• general Kantorovich dual:

W1(µ, ν) = sup
{
〈ϕ, µ〉+ 〈ψ, ν〉|ϕ,ψ ∈ RX , ϕ(x) + ψ(y) ≤ d(x, y) ∀(x, y) ∈ X2

}
• Recall: can add constraints ϕ = ψc, ψ = ϕc. By above Lemma this is equivalent to
ϕ,ψ ∈ Lip1(X) and ψ = −ϕ.

Remark 6.6.

• inherits shift invariance from general Kantorovich dual: can add constant to ϕ and still get
feasible candidate with same objective

• also inherit existence from Kantrovich dual

Example 6.7 (Two Diracs).

6.2 Min-cost flow problem

Definition 6.8 (Metric graph).

• vertices X, edge list E ⊂ X ×X, edge lengths ` : E → R++ = (0,∞)

• symmetric: [(x, y) ∈ E] ⇔ [(y, x) ∈ E], `(x, y) = `(y, x).

• path in X is tuple (x1, . . . , xK) with (xi+1, xi) ∈ E for i = 1, . . . ,K − 1.

• assume graph is connected, i.e. exists path between any two vertices

• length of path L(x1, . . . , xK) :=
∑K−1

i=1 `(xi+1, xi)

• graph metric: induced by length of shortest paths

d(x, y) := min{L(x1, . . . , xK)|(x1, . . . , xK) path in (X,E) with x1 = x, xK = y}

(feasible set of paths is non-empty, since graph is connected. minimizer exists, since only
finite number of paths exists)

• for x = y we say that (x1 = x = y) is a path, which contains no edges and hence L(x1) = 0

26

• d is clearly metric: d(x, y) = d(y, x) by symmetry of E, ` (any path can be reversed without
changing its length). d(x, x) = 0. d(x, y) > 0 for x 6= y since `(. . .) > 0. Triangle inequality
by concatenation of optimal paths.

Definition 6.9 (Gradient operator on graph).

grad : RX → RE , gradϕ(x, y) :=
ϕ(x)− ϕ(y)

`(x, y)

• to avoid redundancy with ‘double-edges’: on a symmetric graph could select arbitrary edge
orientations, keep only one of the two edges.

• many different conventions possible, could also keep both edges

Lemma 6.10 (1-Lipschitz functions on graphs).

• For ψ ∈ RE set ‖ψ‖∞ := max(x,y)∈E |ψ(x, y)|.

• Then ϕ ∈ Lip1(X) ⇔ ‖ gradϕ‖∞ ≤ 1.

Proof.

• ⇐: Let (x, y) ∈ X, let x1 = x, . . . , xK = y be a shortest path from x to y. Then

|ϕ(y)− ϕ(x)| =

∣∣∣∣∣
K−1∑
i=1

ϕ(xi+1)− ϕ(xi)

∣∣∣∣∣ ≤
K−1∑
i=1

|ϕ(xi+1)− ϕ(xi)|

=
K−1∑
i=1

|gradϕ(xi+1, xi) · `(xi+1, xi)| ≤
K−1∑
i=1

`(xi+1, xi)

= L(x1, . . . , xK) = d(x, y)

• ⇒:

| gradϕ(x, y)| = |ϕ(x)− ϕ(y)|
`(x, y)

≤ d(x, y)

`(x, y)
≤ 1.

Remark 6.11 (Deriving the min-cost flow problem).

• Start with Kantorovich–Rubinstein formula:

W1(µ, ν) = sup {〈ϕ, µ− ν〉|ϕ ∈ Lip1(X)}
= sup

{
〈ϕ, µ− ν〉|ϕ ∈ RX , | gradϕ(x, y)| ≤ 1 ∀ (x, y) ∈ E

}
• Rewrite constraint. Let

H : R→ R ∪ {∞}, H(s) =

{
0 if |s| ≤ 1,

+∞ else.

Then:

W1(µ, ν) = sup

〈ϕ, µ− ν〉 − ∑
(x,y)∈E

H(gradϕ(x, y))

∣∣∣∣∣∣ϕ ∈ RX

27

• Generalize notion of Lagrange multiplier. H(s) = supt∈R s · t− |t|

W1(µ, ν) = sup
ϕ∈RX

inf
t∈RE
〈ϕ, µ− ν〉 −

∑
(x,y)∈E

[gradϕ(x, y) · t(x, y)− |t(x, y)|]

• As earlier: constraints have been expressed as optimization over an ‘adversarial’ variable.

• Adjoint and minimax. As before, use adjoint of linear operator and pretend that we
can swap the order of optimization. grad∗ maps RE → RX .

W1(µ, ν) = inf
t∈RE

∑
(x,y)∈E

|t(x, y)|+ sup
ϕ∈RX

〈ϕ, µ− ν − grad∗ t〉

= inf

 ∑
(x,y)∈E

|t(x, y)|

∣∣∣∣∣∣t ∈ RE , grad∗ t = µ− ν

• Explicit form of grad∗.

〈gradϕ, t〉E =
∑

(x,y)∈E

ϕ(x)− ϕ(y)

`(x, y)
· t(x, y)

=
∑
x∈X

ϕ(x) ·

 ∑
y∈X:

(x,y)∈E

t(x, y)

`(x, y)
−

∑
y∈X:

(y,x)∈E

t(y, x)

`(y, x)

︸ ︷︷ ︸

=grad∗ t(x)

• Change of variables. ω ∈ RE , ω(x, y) := − t(x,y)
`(x,y) .

• Introduce divergence:

div : RE → RX , divω(x) :=
∑
y∈X:

(y,x)∈E

ω(y, x)−
∑
y∈X:

(x,y)∈E

ω(x, y)

Then divω = grad∗ t. Interpretation: ω(x, y) is flow on edge (x, y) from y to x (if ω(x, y) >
0, in opposite direction otherwise).

28

divω(x) :=
�

y∈X:
(y,x)∈E

ω(y, x)−
�

y∈X:
(x,y)∈E

ω(x, y)

• New primal problem.

W1(µ, ν) = inf

 ∑
(x,y)∈E

|ω(x, y)| · `(x, y)

∣∣∣∣∣∣ω ∈ RE , divω = µ− ν

• ω is (signed) flow on edges, transforming µ into ν, we pay for amount of flow × length of

edges

• If we keep symmetric edges, then can impose constraint ω(x, y) ≥ 0 (since negative flow
can be ‘delegated’ to reverse edge with positive sign) and get a linear program:

W1(µ, ν) = inf

 ∑
(x,y)∈E

ω(x, y) · `(x, y)

∣∣∣∣∣∣ω ∈ RE+,divω = µ− ν

• This problem is called the min-cost flow problem. (The continuous version is called

Beckmann’s problem.)

Example 6.12 (A simple graph example).

Remark 6.13 (Existence of minimizers and relation to primal Kantorovich problem).

• Let γ ∈ Γ(µ, ν) be minimal in Kantorovich primal.

• For (x, y) ∈ X2 let (x1 = x, . . . , xK = y) be shortest path from x to y. Set

ωx,y(a, b) =

1 if (a, b) = (xk+1, xk) for some k = 1, . . . ,K − 1,

−1 if (a, b) = (xk, xk+1) for some k = 1, . . . ,K − 1,

0 else.

(need second line only if we deleted the symmetric edges)

29

• Find divωx,y = δx − δy.

• Set now ω :=
∑

x,y∈X2 γ(x, y) · ωx,y

divω =
∑
x,y

γ(x, y) divωx,y =
∑
x,y

γ(x, y) (δx − δy)

=
∑
x

µ(x) δx −
∑
y

ν(y) δy = µ− ν.

• Cost of ω: Set G(ω) :=
∑

(x,y)∈E |ω(x, y)| · `(x, y).

• Find: G(ωx,y) = d(x, y). Note: Since |a+ b| ≤ |a|+ |b|, also G is sub-additive. Also: G is
positively one-homogeneous: G(λ · ω) = λG(ω) for λ ≥ 0. Therefore:

G(ω) = G

(∑
x,y

γ(x, y) · ωx,y

)
≤
∑
x,y

γ(x, y) ·G(ωx,y) =
∑
x,y

γ(x, y) · d(x, y) = W1(µ, ν)

• Since infimal values of Kantorovich primal and min-cost flow problems are identical, the
constructed ω must be optimal.

• Reverse construction (γ from ω) is also possible, by ‘following’ flows, but a bit more tedious.

• Alternatively: existence of minimizers can also be shown by existence of feasible candidates
(use connectedness) and coercivity of G. (And closedness of feasible set, continuity of
objective.)

Remark 6.14 (Alternative proof for metric properties of W1).

• W1(µ, ν) ≥ 0 since G(ω) ≥ 0. W1(µ, µ) = 0 since ω = 0 is feasible. W1(µ, ν 6= µ) > 0 since
we need ω 6= 0 for divω 6= 0.

• Symmetry: if divω = µ− ν then div(−ω) = ν − µ and G(ω) = G(−ω).

• Triangle inequality: Let ω be optimal flow for W1(µ, ν), η optimal flow for W1(ν, ρ). Then

div(ω + η) = divω + div η = µ− ν + ν − ρ = µ− ρ

So ω + η is feasible flow from µ to ρ.

• Subadditivity of G:

W1(µ, ρ) ≤ G(ω + η) ≤ G(ω) +G(η) = W1(µ, ν) +W1(ν, ρ).

Proposition 6.15 (Primal-dual optimality condition). ϕ ∈ RX with ‖ gradϕ‖∞ ≤ 1 and ω ∈ RE
with divω = µ − ν are dual-primal optimal for Kantorovich–Rubinstein formula and min-cost
flow problem if and only if

gradϕ(x, y) = − signω(x, y) for all (x, y) ∈ E with ω(x, y) 6= 0.

Proof.

30

• Set t(x, y) = −`(x, y) · ω(x, y). Then grad∗ t = µ− ν. Get

G(ω) =
∑

(x,y)∈E

|t(x, y)| ≥
∑

(x,y)∈E

t(x, y) · gradϕ(x, y)

=
∑
x∈X

grad∗ t(x) · ϕ(x) = 〈µ− ν, ϕ〉

with equality in the second step if and only if

gradϕ(x, y) = sign t(x, y) for all (x, y) ∈ E with t(x, y) 6= 0.

(This is equivalent to the above condition on ω.)

• Since 〈µ− ν, ϕ〉 ≤ W1(µ, ν) ≤ G(ω), equality of G(ω) = 〈µ− ν, ϕ〉 is equivalent to opti-
mality of ω and ϕ.

Example 6.16.

• Intuition: ϕ wants to be large on µ, small on ν. ω flows ‘against’ the gradient of ϕ from µ
to ν. ω acts indeed as Lagrange multiplier for the gradient constraint on ϕ.

31

7 Optimal transport in one dimension

7.1 Monge property, monotonous couplings and north-west corner rule

Remark 7.1.

• Get some intuition on simple problems.

• Much simpler numerically and also theoretically.

Definition 7.2 (Monge property and monotonous plans).

• A cost matrix c ∈ RM×N satisfies the Monge property if

ci,j + ck,l ≤ ci,l + ck,j when i ≤ k, j ≤ l

.

• A transport plan γ ∈ RM×N+ is monotonous if

γi,j > 0 ⇒ γi′,j′ = 0 for [i′ > i ∧ j′ < j] or [i′ < i ∧ j′ > j]

(Monge cost and monotonous coupling)

Proposition 7.3. If c ∈ RM×N satisfies the Monge property and γ ∈ RM×N+ is monotonous,
then γ is an optimal transport plan for µ = PXγ and ν = PY γ with respect to cost c.

Proof.

• For simplicity the proof assume that all entries of µ and ν are strictly positive. Extension
is simple but tedious.

• Proof by induction. Assume γ is optimal on {1, . . . , i}×{1, . . . , j} for some i ∈ {0, . . . ,M−
1} and j ∈ {0, . . . , N − 1}.

• Assume γi,j+1 > 0.

• (Other case, γi+1,j > 0, γi+1,j′ = 0 for j′ = 1, . . . , j − 1 is analogous. The diagonal
case, γi+1,j+1 > 0, and both ‘sides’ zero, can be subsumed in either of the two cases by
re-indexing.)

• [Monotonicity of γ] + [µi > 0] + [νj>0] implies γi,j > 0. With this, monotonicity implies
γi′,j+1 = 0 for i′ ∈ {1, . . . , i− 1}.

32

• Let α, β be optimal duals on {1, . . . , i} × {1, . . . , j}. Now we need to extend β to j + 1.

• Without loss of generality can assume: αi = minj′∈{1,...,j} ci,j′ − βj′ , let j′ be a minimizing
index. So: αi + βj′ = ci,j′ (1).

• By PD optimality condition need: αi + βj+1 = ci,j+1 (2).

• Optimality of α and β on previous set: αi′ + βj′ ≤ ci′,j′ (3).

dual constr
valid here

also active

dual constr
active

• Now combine (1), (2), (3):

αi′︸︷︷︸
≤ci′,j′−βj′ (3)

+ βj+1︸︷︷︸
=ci,j+1−αi (2)

≤ ci′,j′ − βj′ + ci,j+1 − αi = ci′,j′ + ci,j+1 − ci,j′︸︷︷︸
(1)

≤ ci′,j+1

where we used the Monge property in the last step with i′ ≤ i and j′ ≤ j + 1.

• So α and β are dual feasible on {1, . . . , i} × {1, . . . , j + 1} and satisfy the PD optimality
relation.

Lemma 7.4. If h : R → R is convex, X = {x1, . . . , xM} ⊂ R, Y = {y1, . . . , yN} ⊂ R with
xi ≤ xi+1 and yj ≤ yj+1 for i = 1, . . . ,M − 1, j = 1, . . . , N − 1, then ci,j := h(xi − yj) satisfies
the Monge property.

Proof.

33

• Let i ≤ k, j ≤ l. Set

z1 := xi − yl, z2 := xk − yl, z3 := xi − yj , z4 := xk − yj .

• Then z1 ≤ z2 ≤ z4, z1 ≤ z3 ≤ z4.

• z2 − z1 = xk − xi = z4 − z3.

• So there exists λ ∈ [0, 1] such that

z2 = λ z1 + (1− λ) z4, z3 = (1− λ) z1 + λ z4.

• Now:

ci,j + ck,l = h(z3) + h(z2) ≤ (1− λ)h(z1) + λh(z4) + λh(z1) + (1− λ)h(z4)

= h(z1) + h(z4) = ci,l + ck,j .

Remark 7.5. The north-west corner rule generates monotonous transport plans. (See exercises.)

7.2 The cumulative distribution formula for W1 on chain graphs.

Definition 7.6 (Chain graph, metric and cumulative distributions).

• Let X = Y = {1, . . . ,M} with metric d induced by a chain graph with edges (i + 1, i),
i = 1, . . . ,M − 1 and edge lengths `(i+ 1, i).

(cumulative distribution)(masses on a chain graph)

• For uniform edge lengths `(i+ 1, i) = ∆x one has d(i, j) = ∆x · |i− j|.

• For µ ∈ RM define the cumulative distribution function Fµ ∈ RM−1
+ by

Fµi :=
i∑

i′=1

µi′ for i = 1, . . . ,M − 1.

• We can formally extend Fµ by Fµ0 := 0 and FµM :=
∑M

i=1 µi (the latter is done by
numpy.cumsum).

• Claim: W1(µ, ν) =
∑M−1

i=1 `(i+ 1, i) · |Fµi − F νi |.

34

Proof.

• We prove the result by constructing a primal-dual feasible pair for the min-cost flow problem
and the Kantorovich–Rubinstein formula.

• Set ω(i+ 1, i) := Fµi − F νi (difference of mass of µ and ν on vertices {1, . . . , i} is precisely
the mass that needs to flow on edge from i to i+ 1).

divω(i) = ω(i+ 1, i)− ω(i, i− 1) = Fµi − F
ν
i − F

µ
i−1 + F νi−1 = µi − νi.

(Need to be a bit careful at first and last vertex.)

• G(ω) =
∑M−1

i=1 `(i+ 1, i)|Fµi − F νi |.

• construct matching dual:

ϕ(1) = 0, ϕ(i+ 1) =

ϕ(i)− `(i+ 1, i) if ω(i+ 1, i) > 0,

ϕ(i) + `(i+ 1, i) if ω(i+ 1, i) < 0,

∈ [ϕ(i)− `(i+ 1, i), ϕ(i) + `(i+ 1, i)] else.

• clear: ‖ gradϕ‖∞ ≤ 1, ϕ and ω satisfy PD optimality condition ⇒ both are optimal

Example 7.7 (Two Diracs).

Example 7.8 (One Dirac (middle) splits into two (left and right)).

35

8 The Hungarian method

8.1 Intuition and description of the algorithm

Remark 8.1 (Outline, intuition and relation do Dijkstra’s algorithm).

• We want to solve the linear assignment problem, which can be seen as a special case of
the Kantorovich optimal transport problem. For M ∈ N, let µ = ν = (1, . . . , 1) ∈ RM+ and
let cost c ∈ RM×M be given. Solve optimal transport problem min{〈c, γ〉 |γ ∈ Γ(µ, ν)}. In
this case, Γ(µ, ν) are the bi-stochastic matrices. We will show that solving the problem
over the bi-stochastic matrices is equivalent to solving it over permutation matrices.

• The Hungarian method can be seen as iteratively constructing an optimal assignment by
starting from an empty matrix and then add and move ones such that at each step the
current matrix is optimal for its marginals.

• Search for updates (and proof of optimality) is obtained by simultaneously constructing a
dual solution.

• Upon convergence an optimal primal and dual solution are available.

• Originally introduced by Kuhn in 19552, named in honor of Hungarian mathematicians
Dénes Kőnig and Jenő Egerváry upon the work of which it builds. Many variants exist,
lots of heuristics about initialization and ordering in for loops, do not change asymptotic
worst case complexity. We will focus on the main loop and basic idea.

• Before each iteration of the main loop of the algorithm assume that the following holds:

– rows 1, . . . ,K are assigned to some columns,

– some current dual values are given such that: αi + βj ≤ ci,j , equality on current
assignments

– (remark: then this current partial assignment is optimal between its marginals)

• now consider new row K + 1. want to extend assignment, also need a new previously
unassigned column

– consider various ‘changes’ and extensions to the original assignment, and the ‘inflicted
cost’

– interpret each extension as a path

– edge from row i to col j has cost ceffi,j := ci,j − αi − βj
– edge from col j to row i: cost ceffi,j := 0 if (i, j) is part of current partial assignment,

otherwise no edge

– then best extension corresponds to shortest path from row K + 1 to any currently
unassigned column on this directed graph

2H. W. Kuhn: The Hungarian method for the assignment problem, Naval Research Logistics 2, pages 83–97,
1955

36

• when shortest path was found:

– update assignment and update dual variables

– will find: satisfies the original assumptions, now for K + 1

– therefore, the algorithm terminates after M main iterations with an optimal assign-
ment

Algorithm 8.1 (Recall: Dijkstra’s shortest path algorithm on general graph with non-negative
edge weights).
1: function Dijkstra(c,a,label)
2: // find shortest path from a to region where label==0 with edge weights c ≥ 0
3: // set current vertex to root
4: i=a
5: // current lower bounds on distance from initial node a
6: d=[∞ for j ∈ X]; d[i]=0 // X = {1, . . . ,M}
7: // indices of predecessors in shortest paths from root, 0 means ‘empty’
8: pred=[0 for j ∈ X]
9: v=0

10: // vertices that still need to be scanned
11: scan=X \ {i}
12: while label[i]!=0 do // while not reached target region
13: // rowscan to get new lower bound on distances
14: for j ∈ scan do
15: if c[i,j]+v<d[j] then
16: d[j]=c[i,j]+v
17: pred[j]=i
18: end if
19: end for
20: // find smallest current lower bound
21: vNew=∞
22: for j ∈ scan do
23: if d[j]<vNew then
24: vNew=d[j]
25: i=j

37

26: end if
27: end for
28: v=vNew
29: scan=scan\{i}
30: end while
31: b=i
32: return b,d,pred
33: end function

• throughout the algorithm (and upon termination): d[i] >= dist[a,i], equality when
i /∈ scan.

• dist is length of shortest paths between nodes, it is almost metric: non-negative, satis-
fies triangle inequality, (but may be asymmetric or non-separating, if c is asymmetric or
not strictly positive away from diagonal, may also be +∞ when graph is not connected,
i.e. c[i,j] =∞ for some entries).

Algorithm 8.2 (Adjustment to ‘partial assignment graph’).

• assignment graph is bipartite, directed with two disjoint vertex sets X = Y , with edges
only going from X to Y and from Y to X, but not from X or Y to themselves.

• from each Y there is at most one edge to X, if we reach a node in Y with no outgoing edge,
we have found the sought-after shortest path / extension, otherwise we automatically take
the single outgoing edge with weight zero

• partial assignments are stored in arrays γC2R and γR2C which store for each column or row
the currently assigned row or column (and zero if the column or row is still unassigned)

• slightly adjust the general algorithm to this special setting

1: function findPath(c,α,β,γC2R,a)
2: // find shortest path from a to region where γC2R==0
3: // with edge weights c[i,j]-α[i]-β[j] >= 0
4: i=a
5: d=[∞ for j ∈ X]
6: predC=[0 for j ∈ X]
7: predR=[0 for j ∈ X]
8: v=0
9: scanCols=X

10: while i!=0 do

38

11: // rowscan to get new lower bound on distances
12: for j ∈ scanCols do
13: if c[i,j]-α[i]-β[j]+v<d[j] then
14: d[j]=c[i,j]-α[i]-β[j]+v
15: predC[j]=i
16: end if
17: end for
18: // find smallest current lower bound
19: vNew=∞
20: for j ∈ scanCols do
21: if d[j]<vNew then
22: vNew=d[j]
23: jMin=j
24: end if
25: end for
26: v=vNew
27: scanCols=scanCols\{jMin}
28: i=γC2R[jMin]
29: if i!=0 then
30: predR[i]=jMin
31: end if
32: end while
33: b=jMin
34: return b,d,predC,predR
35: end function

Algorithm 8.3.

• With the path search in place, we can now formulate the full Hungarian method

1: function HungarianMethod(c)
2: γR2C=[0 for i ∈ X]
3: γC2R=[0 for i ∈ X]
4: α=[0 for i ∈ X]
5: β=[0 for i ∈ X]
6: for a ∈ X do
7: // find next shortest path
8: b,d,predC,predR=findPath(c,α,β,γC2R,a)
9: // update dual variables

10: for i ∈ X do
11: j=predR[i]
12: if j!=0 then
13: α[i]+=d[b]-d[j]
14: β[j]-=d[b]-d[j]
15: end if
16: end for
17: α[a]+=d[b]
18: // update primal variable
19: j=b

39

20: while j!=0 do
21: i=predC[j]
22: jPred=γR2C[i] // predecessor, we are back-tracking the path
23: γC2R[j]=i
24: γR2C[i]=j
25: j=jPred
26: end while
27: end for
28: return γR2C,γC2R,α,β
29: end function

Remark 8.2. The algorithm can be extended to discrete optimal transport problems with µ, ν
being general probability vectors in ΣM , ΣN .

8.2 Proof of termination and optimality

Lemma 8.3. When α,β are dual feasible, γC2R and γR2C are valid partial assignments of K
elements at beginning of an iteration, then after iteration γC2R and γR2C are valid partial as-
signment of K + 1 elements.

Proof.

• shortest path returned by findPath leads from row a (which is not part of initial partial
assignment) to column b (which is not part of initial partial assignment).

• such a path always exists, since we can simply use a direct edge c[a,b] for some b

• the path is bipartite, going from row to col to row etc, containing a number n of edges
col-to-row which are part of assignment and n + 1 edges row-to-col, that are not part of
assignment, change in assignment corresponds to ‘flipping’ assignment along this path

• therefore get valid assignment with one more entry

Lemma 8.4. When α,β are dual feasible, γC2R and γR2C are valid partial assignments of K ele-
ments, satisfying the complementary slackness condition α[i]+β[j]=c[i,j] on assigned pairs at
beginning of an iteration, then after iteration α and β are dual feasible and satisfy complementary
slackness on updated assignment.

Proof.

• let AR, AC ⊂ X be rows and columns of intermediate nodes visited in search for shortest
path from a to b (including a,b).
AR are those indices where predR was changed and a.
AC are those indices where predC was changed (which includes b).

• complements IR = X \AR, IC = X \AC

• Dijkstra: d[j] ≤ d[b] for all j ∈ AC

• α is increased on AR, β is decreased on AC

• IR × IC : no dual feasibility issues (no change, so feasibility and slackness are preserved)

40

• IR×AC : no issues (only decrease beta, no assignments in this set, since all assignments of
AC go into AR)

• AR × IC :

– let i ∈ AR, j ∈ IC : no assignments in this set, since all assignments of AC go into AR.

– so only need to check dual feasibility. Assume i is successor of jPred in path from a
to b. Then change in α[i] is given by

∆α[i] = d[b]− d[jPred] = dist[rowa, colb]− dist[rowa, coljPred]︸ ︷︷ ︸
=dist[rowa,rowi]

≤ dist[rowa, colj]− dist[rowa, coli] ≤ ceff[i, j]

where we use complementary slackness in the third step and the triangle inequality
for dist in the last step. If i is the initial node a, with dist[rowa, rowa] = 0 the same
expression holds. With this we obtain

∆α[i] + ∆β[j]︸ ︷︷ ︸
=0

≤ ceff[i, j]

– Now add the old α and β on both sides to obtain dual feasibility.

• AR ×AC :

– let i ∈ AR, j ∈ AC : arguing as above, get

∆α[i] +∆β[j] = dist[rowa, colb]− dist[rowa, rowi]− (dist[rowa, colb]− dist[rowa, colj])

= dist[rowa, colj]− dist[rowa, rowi] ≤ ceff[i, j]

(note: if j = b, then ∆β[j] = 0, which is also true since β[b] is not changed). So we
have dual feasibility.

– Now check slackness: First on old assignments (which might no longer be in use).
Let (i, j) be an old assigned pair in AR ×AR. Then predR[i]=j (see findPath, line
30). Therefore, dual changes to α and β in HungarianMethod, line 13 cancel each
other. Complementary slackness is preserved from previous iteration.

– Now updated assignments: when (i, j) is edge in shortest paths from a to b, j being
successor of i, then edge length between them is precisely distance between them,
i.e. have equality dist[rowa, colj] − dist[rowa, rowi] = ceff[i, j] and therefore, comple-
mentary slackness holds.

Proposition 8.5. The Hungarian method terminates and solves the linear assignment problem.

Proof. The proof is a result of the two preceding lemmas.

Remark 8.6.
The worst-case complexity of the Hungarian method is O(M3):

• The main loop in HungarianMethod, line 6 runs for M iterations.

41

• At each iteration the dual update loop, line 10, runs forM iterations. (This could be made
a bit shorter in practice by using a dynamic list (stack, queue) for keeping track of relevant
rows. But it would not change asymptotic worst-case bound, since the length of the list
would be O(M).)

• The primal update loop, 20, retraces the shortest path. Its length is therefore also O(M).

• We need to check the complexity of findPath.

• The main loop at line 10 runs at most over every row, i.e. M times.

• Within the main loop, the col-scans run at most over every column, i.e. M times.

• So the total complexity of findPath is O(M2).

• The total complexity of HungarianMethod is O(M3).

• Precise bound is not so important. Crucial: not exponential! There are M ! potential
assignments. Hungarian method proves that we do not need to check all of them to find
the best. This is possible by the relation to convex optimization.

• Still: strictly super-linear! So can still become quickly impractical on large instances.

8.3 The Birkhoff-von Neumann theorem

Definition 8.7 (Convex hull and vertices).

• Let A ⊂ Rd. The convex hull of A is given by

convA :=

{
k∑
i=1

λi · xi

∣∣∣∣∣k ∈ N, x1, . . . , xk ∈ A, λ1, . . . , λk > 0,
k∑
i=1

λi = 1

}
.

• Intuitively, this is set set of all points that lie ‘between’ the points of A.

• Can also show: convA is intersection of all convex sets that contain A. So convA is
‘smallest convex set which contains A.’

• Even more: If A is closed, then convA is the intersection of all closed half-spaces that
contain A.

• The vertices of a convex set are those that cannot be written as convex combinations of
other points in the set.

42

Proposition 8.8 (Birkhoff-von Neumann). Let M ∈ N. Let PM be the set of M ×M permu-
tation matrices and DM be the set of M ×M bi-stochastic matrices. Then convPM = DM and
PM are the vertices of DM .

Proof.

• Clearly, PM ⊂ DM . Any convex combination of permutation matrices is bi-stochastic. For
instance: Let A =

∑k
l=1 λlP

l where each P l ∈ PM . Then:

M∑
j=1

Ai,j =
M∑
j=1

k∑
l=1

λlP
l
i,j =

k∑
l=1

λl

M∑
j=1

P li,j︸ ︷︷ ︸
=1

=
k∑
l=1

λl = 1

Therefore convPM ⊂ DM .

• We will prove DM ⊂ convPM at the end (because it is the most work). Assume for now
that it holds and consider the vertices:

– Consider some permutation matrix P ∈ PM and any bi-stochastic matrix D ∈ DM . If
D 6= P , then D must have a non-zero entry somewhere where P is zero (a permutation
matrix is completely specified by the list of non-zero entries). Therefore, P cannot be
written as convex combination of any other bi-stochastic matrices, since only positive
coefficients λk are allowed. So P must be a vertex of DM .

– Let D be a vertex of DM . So, since D ∈ DM , by assuming DM ⊂ convPM , D can
be written as convex combination of some PM . But since it is a vertex, it cannot be
written as convex combination of multiple matrices. Therefore, D must be in PM .

• For the last step: we will use the Hungarian method to show that any D ∈ DM can be
written as D = λP + (1− λ)D′ for some λ ∈ (0, 1], P ∈ PM and D′ ∈ DM and if λ < 1,
then D′ has at least one less strictly positive entry than D (next Lemma). Then we apply
the same again on D′ and so on. At each step k we get a decomposition as follows:

D =

k∑
i=1

λi P
i +D′

where all λi > 0 and all D′ has at least k less strictly positive entries than D (or the sum
has terminated before). Since the number of positive entries in D is finite, the sum must
eventually terminate and we have found the sought-after convex combination.

Now provide the missing Lemma.

Lemma 8.9. Let D ∈ DM . Then there are λ ∈ (0, 1], P ∈ PM and D′ ∈ DM , such that
D = λP + (1− λ)D′. If λ < 1, D′ has at least one less strictly positive entry than D.

Proof.

• We will use the Hungarian method to find some P such that [Pi,j > 0] ⇒ [Di,j > 0] for all
i, j ∈ {1, . . . ,M}. Then set

λ := min{Di,j |i, j ∈ {1, . . . ,M}, Pi,j > 0}.

43

• If λ < 1, set D′ := (D− λP)/(1− λ). By construction, D ≥ λP and D− λP has at least
one less positive entry than D.

• If λ = 1, the choice of D′ is irrelevant.

• Now focus on finding P : define the cost

ci,j :=

{
0 if Di,j > 0,

1 else.

• Run the Hungarian method on this cost and let P be the returned optimal assignment. If
〈c, P 〉 = 0, then [Pi,j > 0] ⇒ [ci,j = 0] ⇒ [Di,j > 0].

• Now need to show that 〈c, P 〉 = 0. We will show that this holds throughout the algorithm.
Clearly, it holds upon initialization, since P = 0.

• As long as d[b] = 0 in the result of findPath, no edges with ci,j = 1 have been used for
shortest paths, the duals α and β remain unchanged at zero and thus P must live solely
on entries with ci,j = 0.

• We must therefore make sure that no edge with ci,j = 1 becomes part of a shortest path
in findPath.

• Assume now for some a ∈ {1, . . . ,M}, within findPath, we have explored the sub-graph
reachable from a with zero distance in findPath and no connection to an unassigned
column has been found so far. We have #(AR) = #(AC) + 1.

AR \ {a}

{a}

AC IC

• This means that D is zero on AR × IC (no edges of length zero in this set). Using that D
is bi-stochastic we obtain the following contradiction:

#(AR) =
∑
i∈AR

j∈{1,...,M}

Di,j =
∑
i∈AR
j∈AC

Di,j ≤
∑

i∈{1,...,M}
j∈AC

Di,j = #(AC) = #(AR)− 1

• Therefore, this situation cannot occur and we must always find a path to an unassigned
column with length zero.

44

9 The auction algorithm

9.1 Intuition and description of the algorithm

Remark 9.1 (Context, motivation).

• issue with Hungarian method: long, explicit search for extensions (augmenting paths) is
expensive and cannot be parallelized

• dual feasible set seems a bit easier to handle than primal feasible set, can we approach the
problem from the dual side?

• problem: alternating maximization on the dual does not converge, since problem is non-
smooth (due to constraints).

• can show αccc = αc, so alternating maximization on dual becomes stationary after two
iterations, without reaching a minimizer in general

• sketch: 2d example, getting caught in a ridge
level sets of f

non-differentiable
on this line

• one interpretation of auction algorithm: local alternating dual optimization, but ‘overstep’
local optimum by a little, controlled by a parameter ε

• use partial primal assignment to coordinate the ‘overstepping’

Remark 9.2 (alternative interpretation (from which the name derives)).

• elements in X compete for elements in Y by means of an auction

• interpretation of variables:
α[x]: how much does x need to pay,
c[x, y]: transport cost (assumed non-negative),
−β[y]: how much money does y receive?

• if x wants to buy y, they need to pay c[x, y]− β[y], i.e. transport cost + what y demands
on top of that.

• we start with α = β = 0, and no buy-assignments

• each iteration has two stages: bidding stage and assignment stage

45

• during the bidding stage, all x that do currently not have an assigned y, make a bid for
the y that is currently the cheapest one for them, i.e. argminy c[x, y]− β[y].

• during the assignment stage, each y reviews the received bids and chooses the one for which
−β[y] is maximal. the bidding x is then temporarily assigned to that y.

• a key step: when y adjusts their demanded price −β[y], they add an additional step ε, so
that if one x wants to out-bid another, they have to offer at least ε more

• the auction ends when all buyers and objects are assigned

Remark 9.3 (on the role of ε).

• the algorithm only terminates if ε > 0

• we will show: the number of bidding stages is bounded by ≈M · ‖c‖∞/ε

• the algorithm always returns a feasible primal and dual pair, but they are not necessarily
globally optimal.

• the usual complementary slackness condition (primal-dual optimality condition) is only
satisfied up to ε:

[γi,j > 0] ⇒ [ci,j − αi − βj ≤ ε]

• so the PD gap is at most:∑
i,j

ci,j γi,j −
∑
i

αi −
∑
j

βj =
∑
i,j

[ci,j − αi − βj] γi,j ≤ ε
∑
i,j

γi,j = ε ·M

• trade-off: runtime vs solution precision

• in principle: if values of c are integer, then among permutation matrices the cost 〈c, γ〉
takes integer values. a non-optimal assignment the has to be sub-optimal by at least 1. so
if ε < 1/M , the algorithm must return the optimal assignment

• we will also show: it is possible to reduce the value of ε iteratively, reducing the total
number of bidding stages to at most O(M2 · log ‖c‖∞/ε)

• also will discuss: a heuristic adaptation of the bidding behaviour that is more effective in
practice

Remark 9.4.
auction algorithm features several important paradigms for large scale optimization

• the Hungarian method seeks for sophisticated, exact, non-local updates

• the auction algorithm makes only local updates that are cheap/easy to generate

• it can be parallelized (at least locally)

• by choosing ε one can balance between run-time and accuracy

• gradually reducing ε yields a more efficient method

Algorithm 9.1 (statement of the algorithm).

46

1: function submitBids(c,α,β,γRow)
2: bidLists=[[] for i in range(M)] # generate empty bid lists
3: nBids=0
4: for x in range(M) do
5: if γRow[x]<0 then
6: # iterate over unassigned x
7: # find most attractive y
8: y=argmin(c[x,:]-β)
9: # update dual

10: α[x]=c[x,y]-β[y]
11: # submit bid
12: bidLists[y].append(x)
13: # for convenience: total bid counter
14: nBids+=1
15: end if
16: end for
17: return nBids,bidLists
18: end function
19:
20: function acceptBids(c,α,β,bidLists,γRow,γCol,ε)
21: for y in range(M) do
22: # iterate over all y that received at least one bid
23: if len(bidLists[y])>0 then
24: # find best bid
25: idx=argmin(c[bidLists[y],y]-α[bidLists[y]])
26: x=bidLists[y][idx]
27: # update assignment and duals
28: # make dual a bit smaller than ultimately necessary
29: β[y]=c[x,y]-α[x]-ε
30: # update assignment: remove old assigned x, add new one
31: xOld=γCol[y]
32: if xOld>=0 then
33: γRow[xOld]=-1
34: end if
35: γCol[y]=x
36: γRow[x]=y
37: end if
38: end for
39: end function
40:
41: function auction(c,ε)
42: α=zeros(M)
43: β=zeros(M)
44: γRow=full(M,-1)
45: γCol=full(M,-1)
46: loop
47: nBids,bidLists=submitBids(c,α,β,γRow)

47

48: if nBids==0 then
49: break
50: end if
51: acceptBids(c,α,β,bidLists,γRow,γCol,ε)
52: end loop
53: return γRow,γCol,α,β
54: end function

9.2 Convergence analysis

Lemma 9.5 (Monotonicity and increments).

• Throughout the algorithm, β is non-increasing, α is non-decreasing.

• When y accepts a bid, β(y) decreases by ε.

Proof.

• if x submits bid to y, then αn(x) = c(x, y)−βn−1(y) (here n denotes the iteration number
in the main loop, to keep track of different values at different iterations)

• if y receives best bid from x then

βn(y) = c(x, y)− αn(x)− ε = βn−1(y)− ε.

• so β non-increasing ⇒ α non-decreasing.

Lemma 9.6 (Primal-dual relation).

• after each assignment phase, primal is consistent partial assignment (i.e. each row and
column is assigned at most once).

• duals are feasible throughout algorithm.

• primal and duals satisfy ε-complementary slackness (ε-CS for short), which means:

[γi,j > 0] ⇒ [ci,j − αi − βj ≤ ε]

Proof.

• if y accepts bid from some x, x was previously unassigned. if y was not previously unas-
signed, the unique x′ that was previously assigned to it becomes unassigned. then x and y
are assigned to each other. thus, no double assignments happen.

• dual feasibility:

• since we assume c ≥ 0, α = 0, β = 0 upon initialization, the duals are feasible initially.

• upon submitting a bid, α(x) is set to the value of βc(x), i.e. all constraints in row x are
satisfied.

• currently assigned x do not submit a bid and therefore do not change their dual variable.

• so if duals were feasible before bidding stage, they are satisfied after bidding stage.

48

• β is only decreasing, so if duals were feasible before assignment stage, their are feasible
after assignment stage.

• if y accepts bid from some x (and the two are assigned to each other), β(y) is set to
c(x, y) − α(x) − ε, hence the entry satisfies the ε-CS condition. α(x) and β(y) remain
unchanged as long as the assignment is intact (x submits no bids, the assignment is removed
when y accepts another bid).

Lemma 9.7 (Iteration bound). The algorithm terminates after at most (M−1)·d‖c‖∞/ε+1e+1
iterations.

Proof.

• during each iteration that does not lead to termination, a bid by at least one x is submitted.

• so at least one bid is accepted ⇒ one entry of β is decreased by (at least) ε (see previous
Lemma)

• if y has been assigned once, it never gets unassigned again, only re-assigned

• for unassigned y, β(y) is still zero, since no bid was accepted so far

• if algorithm does not terminate, then at least one y must remain unassigned, and another
y′ must receive an infinite amount of bids, the corresponding β(y′) tends to −∞.

• eventually we will have: c(x, y′)−β(y′) > c(x, y)−β(y); y′ will be no longer be competitive
and receive no more bids.

• this is a contradiction. so each y must eventually receive bid. ⇒ all y assigned ⇒ all x
assigned ⇒ termination

• get a bound on the number of iterations: denote C := ‖c‖∞ for simplicity. let y be the
entry that last receives a bid.

• let y′ be some other element. if C < −β(y′) then c(x, y)− β(y) < c(x, y′)− β(y′) for all x,
and thus y′ will be no longer preferred over y during bid submission.

• so y′ can accept at most dC/εe+ 1 bids before losing competitiveness to y

• so after at most (M − 1) · dC/ε+ 1e iterations all y′ 6= y will have lost competitiveness to
y. y will receive a bid in the next iteration and the algorithm terminates.

Remark 9.8 (total complexity bound).

• submitting a bid has a complexity O(M) since one row-scan must be performed

• receiving a bid has a complexity of O(M2), since up to M bids can be received, each of
which cost O(M) to generate

• by the previous lemma O(MC/ε) bids are received

• so the total complexity is O(M3C/ε) (here we are a bit sloppy about the meaning of O
with more than one variable)

49

Example 9.9 (return to the economic interpretation).

• Let again X denote cafes, Y bakeries in Paris. Assume all bakeries and cafes produce and
buy a unit amount of bread, so the allocation boils down to an assignment problem.

• Assume c(x, y) includes the transport cost as well as the production cost, i.e. this is the
minimal amount that cafe x has to pay. Then each cafe x wants to buy from the bakery
with the lowest c(x, y) (for x fixed). But this may not yield a valid assignment.

• Assume the cafes perform an auction to resolve the conflict.

• Some extreme, but prototypical situations: all cafes and bakeries are very close, except for
a few outliers. How are the duals chosen?

Remark 9.10 (aggressive bidding strategy).

• the determination of the dual variable α[x] can be adjusted as follows:

• in addition to computing the minimal y, compute the ‘next best minimizer’:
y2=argmin(c[x,:]-β|y2 != y)

• then the dual is set to:
α[x]=c[x,y2]-β[y2]

• this may temporarily violate the constraint at (x, y), but this is fixed upon acceptance of
a bid at y (even if it is one not coming from x)

• in practice this may faster resolve certain ‘almost-ties’ where two x compete for the same
y for several iterations. it can sometimes lead to a faster increase in α

• the duals still remain monotonously increasing / decreasing, all of the above lemmas remain
valid

9.3 Epsilon scaling

Remark 9.11.

• To obtain a good accuracy of the resulting assignment, a small value of ε is required.

• But this implies a potentially large number of iterations.

• We will now show: the algorithm can be run with a large value of ε first. Then decrease ε,
delete the primal assignments but keep the current duals. The algorithm then converges
faster.

• By choosing a suitable schedule for ε, this will effectively lead to replacing the factor C/ε
in the complexity estimate by M log(C/ε) where ε is now the desired final value.

• This strategy is called epsilon scaling.

• Similar to the standard iteration bound, for the epsilon scaling bound we need to bound
the maximal decrease of the dual variables β. This will then imply a bound on the maximal
number of accepted bids. The new bound no longer depends on c, but on the fact that we
already have found a solution for a larger value ε̂.

50

Lemma 9.12.

• Let α̂ and β̂ be dual feasible variables and let γ̂ be a permutation matrix, such that γ̂ and
(α̂, β̂) satisfy ε̂-complementary slackness for some ε̂ ≥ 0.

• If the auction algorithm is initialized with (α, β) = (α̂, β̂) (and γ = 0) and with some step
parameter ε > 0, then

α[x] ≤ α̂[x] +M (ε̂+ ε), β[y] ≥ β̂[y]−M (ε̂+ ε)

for all entries of α and β throughout the algorithm.

Proof.

• At any point during the algorithm let γ be the current partial assignment. Define a bi-
partite directed graph with vertex sets X = {x1, . . . , xM} and Y = {y1, . . . , yM} with an
edge from xi to yj if γ̂i,j = 1, and an edge from yj to xi if γi,j = 1.

• (The notation {x1, . . . , xM} and {y1, . . . , yM} makes it easier to distinguish the two vertex
sets.)

• Observe: there must always be a path from an unassigned x (unassigned under γ) to some
unassigned y, because every x (unassigned and assigned) has an outgoing edge induced by
γ̂, and every assigned y has an outgoing edge induced by γ (which however can never lead
to the initial x or some previously visited x).

• For some unassigned x, let (x = x1, y1, x2, y2, . . . , xn, yn) be such a path, i.e.

γ̂(xi, yi) = 1 for i = 1, . . . , n, γ(xi+1, yi) = 1 for i = 1, . . . , n− 1.

• Recall: α and β are dual feasible throughout algorithm and satisfy ε-CS with γ. Use this
to bound:

α(xi) ≤ c(xi, yi)− β(yi) for i = 1, . . . , n,

β(yi) ≥ c(xi+1, yi)− α(xi+1)− ε for i = 1, . . . , n− 1

combine these to get:

α(x1) ≤
n−1∑
i=1

[c(xi, yi)− c(xi+1, yi)] + c(xn, yn)− β(yn) + (n− 1) · ε

51

• Similarly, use that α̂, β̂ are dual feasible and satisfy ε̂-CS with γ̂ to bound:

α̂(xi) ≥ c(xi, yi)− β̂(yi)− ε̂ for i = 1, . . . , n,

β̂(yi) ≤ c(xi+1, yi)− α̂(xi+1) for i = 1, . . . , n− 1

combine these to get:

α̂(x1) ≥
n−1∑
i=1

[c(xi, yi)− c(xi+1, yi)] + c(xn, yn)− β̂(yn)− n · ε̂

• Now use that yn is still unassigned, i.e. it has not yet received a bid during the current run
of the auction algorithm. Therefore, β(yn) = β̂(yn).

• Combining now the two bounds on α̂(x1) and α(x1) we get:

α(x1) ≤ α̂(x1) + n · ε̂+ (n− 1) · ε

• Here n is at most M . This bound holds as long as x1 is unassigned, even after x1 has
submitted its final bid (we only used dual feasibility and complementary slackness, which
still hold in this moment). Therefore, the bound holds also when the last bid was accepted
and therefore at all stages throughout the algorithm (by monotonicity of α, see previous
section). We get:

α(x) ≤ α̂(x) +Mε̂+ (M − 1) · ε

This implies the claimed bound on α.

• For β: For y ∈ Y , let x ∈ X be the partner that it is eventually assigned to after completion
of the current run of the auction algorithm. By initial dual feasibility and final ε-CS we
find:

β̂(y) ≤ c(x, y)− α̂(x), β(y) ≥ c(x, y)− α(x)− ε

and by combination:

β(y) ≥ β̂(y)− [α(x)− α̂(x)]− ε

With the bound on α this implies the claimed bound.

Lemma 9.13 (Bound on accepted bids).

• With the initialization of the previous lemma, at most (M − 1)(bMε̂/εc+M) + 1 bids are
accepted.

• The total complexity of the re-run of the auction algorithm is O(M4ε̂/ε).

Proof.

• As in the last section: β is non-increasing, every accepted bid decreases the corresponding
β by (at least) ε. Therefore (M − 1) elements of Y can accept at most bMε̂/εc+M bids
before violating the given bound on β. At least one element of Y accepts only a single bid
(the last one to be assigned).

52

• As before: for every accepted bid there may be O(M) submitted ones. The cost of a
submitted bid is O(M) (this includes the cost of accepting). Thus, the total bound is
O(M4ε̂/ε).

Remark 9.14 (ε-scaling).

• If we want to solve an assignment problem with c ∈ RM×M+ with C := ‖c‖∞ up to a
complementary slackness precision of ε > 0, this can be done with a complexity of O(M4 ·
log(C/ε)) by repeatedly using the auction algorithm (again, we are a bit sloppy in the
notation of O and multiple variables).

• To achieve this, we initialize α = β = 0 and repeatedly re-apply the auction algorithm
with εk = qk · C starting at k = 1, with some scaling factor q ∈ (0, 1), until εk ≤ ε.

• At k = 0, we know that any assignment is C-CS with α = β = 0 by the bound on c, where
C = ε0. At any subsequent k we know that the previous γ,α,β satisfy εk−1-CS. So the
complexity bound from the previous lemma applies at each stage with ε̂/ε = q−1.

• We need approximately dlog(C/ε)/ log(1/q)e stages.

53

10 Entropic regularization

10.1 Regularized primal and dual problems

Remark 10.1 (Motivation). • add (negative) entropy of transport plan to objective

• advantage 1: leads to a very simple numerical algorithm that can be interpreted as a
smooth auction algorithm. Can be parallelized and implemented on GPUs.

• advantage 2: primal optimal transport plan becomes unique, minimal value becomes dif-
ferentiable as function of marginals:
improved robustness in more complicated data analysis pipelines where OT is only a part

• advantage 3: related to improved sample complexity in higher dimensions, see for instance:
Feydy et al. Interpolating between Optimal Transport and MMD using Sinkhorn Diver-
gences, AISTATS 2019

Definition 10.2 (Negative entropy).

H(γ) :=
∑
i,j

h(γi,j), h(s) : R+ → R, s 7→ s log(s)− s+ 1

with the convention 0 log 0 = 0 such that h(0) = 1

• definition consistent at zero: h is continuous on R+ and thereforeH is continuous on RM×N+

• motivation for ‘extra terms’ in h: non-negative, minimal value is h(1) = 0

• strictly convex:

h′(s) = log s for s > 0, h′′(s) = 1/s for s > 0

• high when γ is concentrated on few entries, low when diffuse (maximal values at the vertices
of Γ, follows from strict convexity)

• careful about continuum limit, related notion: Kullback–Leibler divergence:

KL(ρ|σ) :=

{∫
h
(
dρ
dσ

)
dσ if ρ� σ, ρ ≥ 0,

+∞ else.

54

or in discrete setting:

KL(ρ|σ) :=

{∑
i h (ρi/σi) σi if ([σj = 0]⇒ [ρj = 0] for all j), ρ ≥ 0,

+∞ else.

KL is jointly convex and weak* lower-semicontinuous in both its arguments.

• Our choice above corresponds to σi,j = 1. σi,j = µi · νj is also common.

Definition 10.3 (Entropic primal problem).

min {〈c, γ〉+ εH(γ)|γ ∈ Γ(µ, ν)}

where H is the negative entropy and ε ≥ 0 is the regularization strength.

Proposition 10.4. The entropic primal problem has a unique minimizer.

Proof.

• H is continuous on RM×N+ , so the primal objective is continuous on Γ(µ, ν).

• Γ(µ, ν) is compact (closed, bounded, see earlier arguments, Bolzano–Weierstrass) ⇒ exis-
tence of minimizers

• uniqueness: assume γ1 and γ2 were two distinct minimizers. Then both have the same
objective value. Let now γ := 1

2γ1 + 1
2γ2.

• Denote by E the objective, which is strictly convex since the linear term is convex and H
is strictly convex. Then:

E(γ) < 1
2E(γ1) + 1

2E(γ2) = E(γ1) = E(γ2)

Hence, γ1, γ2 cannot be minimal.

Remark 10.5 (Derivation of the dual problem).

• as before, argue via Lagrangian: primal problem is equivalent to

inf
γ∈RM×N

+

sup
α∈RM ,β∈RN

〈c, γ〉+ εH(γ) + 〈α, µ− PXγ〉+ 〈β, ν − PY γ〉

• swap order of minimization, reorder terms

sup
α∈RM ,β∈RN

〈α, µ〉+ 〈β, ν〉+ inf
γ∈RM×N

+

[〈c− P∗Xα− P∗Y β, γ〉+ εH(γ)]

• since H is acting ‘entry-wise’ on γ, the min can be performed for each entry of γ separately.
let us solve the following sub-problem:

inf
s≥0

ψ · s+ ε h(s)

55

• try first order optimality condition:

0 = ∂s[ψ · s+ ε h(s)] = ψ + ε log(s) ⇒ s = exp(−ψ/ε) > 0

this value lies in the region where h′ is defined. by strict convexity of h this must be the
unique minimizer. we get:

inf
s≥0

ψ · s+ ε h(s)︸︷︷︸
=s log s−s+1

= ψ exp(−ψ/ε) + ε [exp(−ψ/ε) (−ψ/ε)− exp(−ψ/ε) + 1]

= −ε · [exp(−ψ/ε)− 1]

• back to full problem, arrive at regularized dual:

(. . .) = sup
α∈RM ,β∈RN

〈α, µ〉+ 〈β, ν〉 − ε
∑
i,j

[
exp

(
− ci,j−αi−βj

ε

)
− 1
]

• discussion: the term −ε exp
(
− ci,j−αi−βj

ε

)
acts like a smooth approximation of the con-

straint ci,j − αi − βj ≥ 0. if the constraint is violated, the term tends to +∞ as ε→ 0. if
the constraint is satisfied, the penalty tends to 0.

• the last term, −ε · (−1) is constant and tends to 0 as ε→ 0.

• so we have a smooth, unconstrained approximation of the original dual problem

• observe: still have the invariance under constant shifts of α and β, but by convexity of exp
the objective is strictly concave up to these constant shifts, i.e. dual maximizers are unique
up to these shifts

Proposition 10.6. Dual maximizers exist and are unique up to constant shifts.

Proof.

• assume for simplicity, µ ∈ ΣM , ν ∈ ΣN . if they do not have equal mass, the problem is
not well-defined (or the optimal value is +∞). if they do not have unit mass, the problem
can be rescaled accordingly. assume µ and ν have strictly positive entries. zero entries can
be eliminated beforehand.

• then we can rewrite the dual objective as:

sup
α∈RM ,β∈RN

∑
i,j

fi,j(αi + βj) with fi,j(z) := z · µi · νj − ε
[
exp

(
− ci,j−z

ε

)
− 1
]

• each fi,j is bounded from above and tends to −∞ as z → ±∞. hence, in a maximizing
sequence of (α, β), all entries αi + βj must remain bounded.

• thus we can extract a subsequence where P∗Xα + P∗Y β converges. by the invariance under
constant shifts we can, for instance, fix α1 = 0 in the whole sequence. then, by convergence
of α1 + βj , β must converge, and then by the same argument also all entries of α

• since the objective is continuous, this limit must be a maximizer.

56

• uniqueness up to constant shifts: assume (α1, β1) and (α2, β2) are two maximizers that
do not just differ by a constant shift. therefore, P∗Xα1 + P∗Y β1 6= P∗Xα2 + P∗Y β2. since
fi,j introduced above is strictly concave, this implies that the midpoint between the two
maximizers must have a better score, which is a contradiction.

Proposition 10.7 (Primal-dual optimality condition). γ ∈ Γ(µ, ν) and (α, β) ∈ RM × RN are
primal-dual optimal if and only if

γi,j = exp

(
−ci,j − αi − βj

ε

)
for i = 1, . . . ,M, j = 1, . . . , N.

Proof.

• Recall the derivation of the dual problem, when we explicitly minimized over the entries
of γ. We obtained:

s · ψ + ε h(s) ≥ −ε[exp(−ψ/ε)− 1]

with equality if and only if s = exp(−ψ/ε).

• Now apply this to the primal dual gap:

[〈c, γ〉+ εH(γ)]−

〈α, µ〉+ 〈β, ν〉 − ε
∑
i,j

[
exp

(
− ci,j−αi−βj

ε

)
− 1
]

(now use γ ∈ Γ(µ, ν), i.e. PXγ = µ,. . .)

=
∑
i,j

[
[(ci,j − αi − βj) · γi,j + ε h(γi,j)] + ε

[
exp

(
− ci,j−αi−βj

ε

)
− 1
]]

(now for each i, j the corresponding term is of the above form, so we get:)

≥ 0

with equality if and only if γi,j = exp
(
− ci,j−αi−βj

ε

)
for all i, j.

Proposition 10.8. As ε→ 0, minimizers of the primal entropic problem converge to a minimizer
of the unregularized problem.

Proof.

• At ε > 0 denote by γε the unique minimizer of the entropic problem with regularization
strength ε.

• Since all γε lie in Γ(µ, ν), which is compact, we can extract a converging subsequence from
{γε|ε > 0} with a cluster point γ0.

• Since Γ(µ, ν) is closed, γ0 ∈ Γ(µ, ν).

• Now recall that H is continuous on RM×N+ and bounded on Γ(µ, ν). The former means
that limn→∞H(γn) = H(γ) for converging sequences (γn)n with limit γ. The latter means
that for any γ ∈ Γ(µ, ν) we have limε→0 εH(γ) = 0.

57

• Let now (εn)n be a sequence of strictly positive regularization parameters, εn → 0, such
that γεn → γ0. (Exists by above compactness argument.) For any γ ∈ Γ(µ, ν) we find:

〈γ, c〉 = lim
n→∞

〈γ, c〉+ εnH(γ) ≥ lim
n→∞

〈γεn , c〉+ εnH(γεn) = 〈γ0, c〉

where we used boundedness of entropy in the first equality, optimality of γεn in the second
step, and boundedness of entropy in the third step.

Remark 10.9 (Convergence as ε→ 0).

• In the continuous setting this convergence is harder to prove, since H is unbounded and
often H(γ0) =∞. Proof can be done via Γ-convergence.

• If the minimizer at ε = 0 is not unique, one can show that γ0 is the minimizer which
has the lowest (negative) entropy. So entropy regularization always selects a unique well-
characterized minimizer which is useful in many applications.

• One can also show convergence of the optimal dual variables.

10.2 Sinkhorn algorithm

Remark 10.10 (Derivation as alternating dual maximization).

• Consider now the dual objective for fixed β and optimize over α. The objective can be
written as:

∑
i

µi · αi − ε exp(αi/ε) ·
∑
j

exp
(
− ci,j−βj

ε

)+ 〈β, ν〉+ ε
∑
i,j

1

• So we can optimize over each αi individually. Take partial derivative and set to zero:

0 = µi − exp(αi/ε) ·
∑
j

exp
(
− ci,j−βj

ε

)

• Resolve for α, analogous formula for optimization over β:

αi = ε log

µi/∑
j

exp
(
− ci,j−βj

ε

) , βj = ε log

[
νj/
∑
i

exp
(
− ci,j−αi

ε

)]

• Now, if we start with some initial α(0), β(0), then generate α(1) by optimizing over α, then
β(1) by optimizing over β and keep on iterating, the update rule is given by:

α
(`)
i := ε log

µi/∑
j

exp

(
− ci,j−β

(`−1)
j

ε

) , β
(`)
j := ε log

[
νj/
∑
i

exp

(
− ci,j−α

(`)
i

ε

)]

for ` ≥ 1.

Remark 10.11 (Reformulation with scaling factors).

58

• Define the matrix k ∈ RM×N++ via ki,j := exp(−ci,j/ε). Introduce the scaling factors u(`) ∈
RM+ , v(`) ∈ RN+ via

u
(`)
i := exp(α

(`)
i /ε), v

(`)
j := exp(β

(`)
j /ε).

• Then the above iterations for α(`) and β(`) can be equivalently rewritten as

u
(`)
i :=

µi∑
j ki,j v

(`−1)
j

, v
(`)
j :=

νj∑
i ki,j u

(`)
i

.

• This can be compactly written as

u(`) :=
µ

k.v(`−1)
, v(`) :=

ν

k>.u(`)
.

where the . denotes matrix-vector multiplication and the fraction of to vectors is two be
understood entry-wise. This is the famous Sinkhorn algorithm and its main loop can be
written in two lines in most scientific computing environments.

• Note that since α, β ∈ RM × RN , one has u, v = exp(α/ε), exp(β/ε) ∈ RM++ × RN++ and
also k = exp(−c/ε) ∈ RM×N++ , the division is always well-defined. However, numerically
this may become an issue. We will address this later.

Proposition 10.12. The iterates generated by the Sinkhorn algorithm converge to a dual max-
imizer (up to constant shifts).

Proof.

• As long as the iterates change (by more than constant shifts), the dual objective is strictly
increasing. If they do not change, by virtue of the first-order optimality conditions, we
have found a dual maximizer.

• Argue as in the dual existence proof: the dual objective is bounded from above, its super-
level sets are compact (up to constant shifts). Hence, up to constant shifts, the iterates
must have converging subsequences.

• Since µ and ν are assumed to be strictly positive (otherwise, eliminate those rows and
columns), the entries of α and β are always > −∞ (or u and v are strictly positive). For
such values, the iteration maps β(`−1) 7→ α(`) and α(`) 7→ β(`) are continuous. Hence, the
cluster point must be a fixed-point of the iteration maps and therefore dual optimal.

• This must hold for all cluster points of the dual iterates. But since there is only one
dual optimizer (after discarding constant shifts), the whole sequence must converge (up to
shifts).

Remark 10.13 (Corresponding primal sequence).

• Recall the primal-dual optimality condition:

γi,j = exp

(
−ci,j − αi − βj

ε

)
= ui · ki,j · vj

59

So we can associate a sequence of primal iterates with the dual iterates. Note the following:∑
j

u
(`)
i ki,j v

(`−1)
j =

∑
j

µi∑
j′ ki,j′ v

(`−1)
j′

ki,j v
(`−1)
j = µi∑

i

u
(`)
i ki,j v

(`)
j =

∑
i

νj∑
i′ ki′,j u

(`)
i′

ki,j u
(`)
i = νj

• So after a u-update, the primal iterate satisfies the row-constraints, after a v-update it
satisfies the column-constraints.

• The updates can be interpreted as re-scaling each row or column such that those constraints
are satisfied.

• Since the map from dual to primal iterates is continuous, convergence of dual iterates
implies convergence of primal iterates.

• By stationarity of the optimal duals (under further iterations), the limit of the primal
iterates satisfies row and column constraints and therefore, by the primal-dual optimality
condition, must be the unique primal minimizer.

Remark 10.14 (Stopping criterion).

• The Sinkhorn algorithm virtually never converges exactly. When do we stop in practice?

• Various stopping criteria possible. Simplest choices: maximum number of iterations, L1-
error of marginals (or KL), step-size of dual variables.

• Numerical evaluation of primal-dual gap is unfortunately not possible, since primal candi-
date γi,j does not lie in Γ(µ, ν). (We will later discuss examples where this is possible.)

Remark 10.15 (Relation to auction algorithm).

• For simplicity, letM = N , µi = νj = 1, i.e. we will solve a regularized assignment problem.

• The update for α is then given by:

α
(`)
i = −ε log

∑
j

exp

(
− ci,j−β

(`−1)
j

ε

)
• Now, for a vector ψ ∈ RM consider the following operation:

C := −ε log
(∑

i

exp(− ψi︸︷︷︸
≥minψ

/ε)
)

≥ −ε log
(
M · exp(−minψ/ε)

)
= minψ − ε logM

and similarly

C ≤ −ε log
(

exp(−minψ/ε)
)

= minψ

• So we have: minψ − ε logM ≤ C ≤ minψ

60

• C is therefore often called ‘soft-min’ if ψ with regularization strength ε.

• We find: Sinkhorn iterates are computing soft-min of (ci,j − βj)j , i.e. a smooth version of
the c-transform. For ε→ 0, the iteration map converges to the c-transform.

• We know: alternating c-transform (i.e. alternating maximization) of unregularized dual
does not converge to minimizer. But it works on smoothed version. This is a bit sim-
ilar to auction algorithm, where we avoid getting stuck. But this time not by explicit
‘overstepping’ the ridge, but by smoothing the ridge.

• Note: Sinkhorn algorithm is ‘symmetric’ in X, Y , whereas auction is not.

• Can anticipate: convergence may get slow as ε→ 0.

Remark 10.16 (Speed of convergence).

• Franklin, Lorenz, Linear Algebra and its Applications, (1989): linear convergence of dual
iterates to maximizer in Hilbert’s projective metric. But: contraction ratio approaches 1
like 1− exp(−‖c‖∞/ε) as ε→ 0.

• Knight, SIAM. J. Matrix Anal. & Appl. (2008): local linearization of Sinkhorn iterations
around dual solution, get better linear rates, but these are not so relevant in practice, since
(at least for small ε) one usually has to start far from minimizer

• Schmitzer, SIAM J. Sci. Comput. (2019): convergence of an asymmetric (‘auction-like’)
Sinkhorn algorithm in O(1/ε) iterations (measured in L1-error of primal iterate marginal
constraints)

• Berman, Numerische Mathematik (2020): convergence of the Sinkhorn algorithm for the
W2 distance on the Torus in O(1/ε) iterations, by showing that the iterates asymptotically
follow a non-linear PDE

• ε-scaling very efficient in practice (at least on ‘normal problems’) but no proof for its
efficiency yet (as far as I am aware)

10.3 Numerical tweaks for the Sinkhorn algorithm

Remark 10.17 (Rolling max for log-sum-exp).

• Recurring problem in scientific computing / machine learning: compute

C = ε · log

∑
j

exp(ψj/ε)

for some vector ψ ∈ RM and ε > 0. this operation is sometimes called ‘log-sum-exp’.
problem: naive evaluation can become numerically unstable for small ε.

• absolute max and re-scaling: if maxψ is known, set ∆ψj := ψj − maxψ and proceed as
follows:

C = ε · log

(∑
j

exp((maxψ + ∆ψj)/ε)

)
= maxψ + ε · log

(∑
j

exp(∆ψj/ε)

)

61

since ∆ψj ≤ 0, the worst that can happen is ‘underflow’ and exp(∆ψj) becomes numerically
zero for some j. But then, contributions of that index to the result is indeed negligible.
And there is always at least one j (where the maximum is attained) where exp(∆ψj) = 1
and thus the argument of the log remains a numerically stable number.
Main problem: if maxψ is not known, an additional pass through ψ is required to determine
the maximum.

• alternative: rolling max. numerically represent positive (potentially very large) real number
(redundantly) as si = bi · exp(ei/ε). can compute addition in a stable way as follows:

s1 + s2 = b1 · exp(e1/ε) + b2 · exp(e2/ε) = b3 · exp(e3/ε)

b3 and e3 are not uniquely determined. we choose them as follows:{
if e1 ≥ e2 : e3 = e1, b3 = b1 + b2 · exp((e2 − e1)/ε),

else : e3 = e2, b3 = b1 · exp((e1 − e2))/ε) + b2

in short: e3 = max{e1, e2}, b3 =
∑2

i=1 bi exp((ei − e3)/ε) (but numerically one should use
the if-formulation above, uses less calls to exp)

• now apply this to exp sum. let

Sj := bj · exp(ej/ε) :=

j∑
k=1

exp(ψj/ε).

then

Sj+1 = bj+1 · exp(ej+1/ε) = Sj + exp(ψj+1/ε)

and we set

ej+1 = max{ej , ψj+1}, bj+1 = bj · exp((ej − ej+1)/ε) + exp((ψj+1 − ej+1)/ε).

Finally, the result C = ε log(SM) is given by eM + ε log(bM).

The following tweaks are described in detail in [Schmitzer, SIAM J. Sci. Comput. (2019)]. Code
is available at https://bernhard-schmitzer.github.io/MultiScaleOT/.

Remark 10.18 (Alternative: ‘stabilized’ kernel matrix).

• Entries of ki,j = exp(−ci,j/ε) are bounded from above (if ci,j ≥ 0), but they can be very
small/close to zero.

• Upon convergence entries of γi,j = ui ki,j vj are bounded from above, but we can have
γi,j ≈ 1 where ki,j is exponentially small. So typically entries of ui, vj can be both very
large and very small.

• Recall: optimal assignment is invariant under changing the cost row and column-wise.
ĉi,j := ci,j − α̂i − β̂j has same optimal coupling as ci,j . This also holds with entropic
regularization.

62

https://bernhard-schmitzer.github.io/MultiScaleOT/

• Now set α̂ and β̂ to optimal (entropic) dual solutions. Set û := exp(α̂/ε), v̂ := exp(β̂/ε).
Then for the primal optimal solution γ we have:

γi,j = ûi ki,j v̂j = exp
(
− ci,j−α̂i−β̂j

ε

)
= exp(−ĉi,j/ε) = ui k̂i,j vj

where we set ui = vj = 1 and k̂i,j = exp(−ĉi,j).

• This means: if we knew optimal duals, by re-weighting the cost with them, the necessary
scaling factors become just 1.

• Of course: chicken-and-egg problem: to know optimal duals we need to have solved problem
already.

• Practical suggestion: estimate the re-weighting duals iteratively during the Sinkhorn algo-
rithm:

– Start with α̂i = β̂j = 0, ui = vj = 1 and iterate u and v with respect to k̂ = k.

– When entries of u or v become larger than some threshold, set

α̂← α̂+ ε log(u), β̂ ← β̂ + ε log(v), u← 1, v ← 1,

recompute k̂ (and ĉ) from new (α̂, β̂) and keep iterating with the re-set u,v.

• Advantage over rolling max: preserves matrix-vector multiplication structure of algorithm,
can still use standard matrix libraries

• Disadvantage: not guaranteed to be stable. Even a single iteration might lead to numerical
overflow in extreme cases.

Remark 10.19 (Epsilon-scaling).

• Observe in numerical experiments: convergence gets slow as ε→ 0. But in many applica-
tions small ε is desirable (not in all!).

• Effective heuristic, similar to auction algorithm: start with large value of ε and gradually
reduce it (for instance, whenever the stopping criterion is reached).

• Unfortunately no full proof for the effectiveness available yet.

• Small but relevant detail: when changing ε, do keep α and β constant, not u and v.

Remark 10.20 (Kernel truncation).

• On large problems storing the matrix k can be prohibitive, and matrix-vector multiplica-
tions k.v become slow.

• Naive idea: many entries of k are exponentially small. Can we drop them and approximate
k by a sparse matrix?

• Problem: entries of u, v can become exponentially large. Removing small entries of k
corresponds to removing large entries in c. These could still be highly relevant in optimal
transport plan.

63

• Solution: combine with kernel stabilization (see above).

• When u and v are re-set and k̂ is re-computed, apply truncation. As long as entries in u
and v are small, discarding small entries in k̂ is harmless. When entries in u or v become
large, re-set; recompute and re-truncate k̂.

• If one works with truncated k̂, it is advisable to use sparse matrix format, such as CSR,
which are efficient for matrix-vector multiplication. Since we need to compute multiplica-
tions with k̂ and k̂>, it may be advisable to store two copies of the sparse matrix, one in
transposed form. (This will still be more memory efficient than a single dense matrix.)

Remark 10.21 (Coarse-to-fine scheme).
ε = 1280h2, |N | = 57659 ε = 80h2, |N | = 20060 ε = 5h2, |N | = 5263

i =4, |N | = 225 i =2, |N | = 1253 i =0, |N | = 5263

64

11 Mini-introduction: Convex optimization and duality

11.1 Convex functions

Remark 11.1 (Motivation).

• In general: optimization is ‘hard’, can only do it locally, e.g. by following a gradient (in
continuous problems).

• Will typically converge to some local minimum, little to no information about how well we
have done in a global sense.

• Combinatorial optimization is also hard, a priori not even gradient descent is possible.

• Convex problems are the notable exception: every local minimum is also a global minimum.

• But there is more: convexity is a very strong global structural property, notion of convex
duality: sub-optimality bounds.

• So: for convex problems there are efficient large scale algorithms

• But: convexity has its limits in modelling interesting behaviour. Probably not surprising
that modern machine learning is largely built beyond convex methods. (But convexity can
still be used for the analysis of some systems.)

• Many of the tricks and derivations, such as (generalized) Lagrange multipliers, we have
used so far seem like ‘individual clever tricks’. We will now learn that there is a system
behind them.

Definition 11.2 (Convex function).

• A function f : Ω→ R is convex if Ω ⊂ Rd is convex and

f
(
(1− λ) · x+ λ · y

)
≤ (1− λ) · f(x) + λ · f(y)

for all x, y ∈ Ω, λ ∈ [0, 1].

• Common convention: f(x) := ∞ where it is not defined (e.g. entropy for negative mea-
sures). Then convexity implies that the region where f < ∞ (usually called effective
domain) is convex (which corresponds to Ω above).

Definition 11.3 (Subdifferential).

• Let f : Rd → R ∪ {∞}. A vector v ∈ Rd is a subgradient at x if

f(y) ≥ f(x) + 〈y − x, v〉 for all y ∈ Rd.

• The set of all subgradients at x is denoted by ∂f(x).

65

Example 11.4 (absolute value).

Example 11.5 (indicator of [−1, 1]).

Remark 11.6 (Pointwise supremum over affine functions).

• Let h : Rd → R ∪ {∞} be a function that assigns to each slope a an offset h(a). Then
fa : x 7→ 〈x, a〉 − h(a) is an affine function with slope a, shifted by −h(a).

• We can now define a function f as follows: for every x we take the supremum (maximum)
over all functions fa:

f(x) := sup
a∈Rd

〈x, a〉 − h(a)

We can set h(a) = +∞ if we want to ‘forbid’ some slope a.

66

• One can show: functions built this way are always convex and lower-semicontinuous (lsc).
And any convex, lower-semicontinuous function can be written this way, for a suitable h.
How can we find this h?

−h(a) = max{y ∈ R | 〈x, a〉+ y ≤ f(x)∀x}
= max{y ∈ R | 〈x, a〉 − f(x) ≤ −y ∀x}

h(a) = min{y ∈ R | 〈x, a〉 − f(x) ≤ y ∀x}
= min{y ∈ R | sup

x
〈x, a〉 − f(x) ≤ y}

= sup
x
〈x, a〉 − f(x) := f∗(a)

• Note: if we have found h = f∗, then reconstructing f is done by f = h∗ = f∗∗. This is a
surprising function transformation which seems to be its own inverse (on the set of convex
lsc functions).

• The transformation is called the ‘Fenchel–Legendre conjugation’.

Example 11.7.

• Recall in min-cost flow problem: we used the function

H(s) =

{
0 if |s| ≤ 1,

+∞ else.

and we observed that it can be written as

H(s) = sup
t∈R

s · t−G(t) where G(t) = |t|.

• Now we can write this as H = G∗. And since G is convex and lsc we must have H∗ = G.

• So the Fenchel–Legendre conjugation gives us a systematic way to derive the suitable G
for given H.

67

Proposition 11.8 (Fenchel–Young inequality).
Let f : Rd → R ∪ {∞} be convex and lsc.

• f(x) + f∗(y) ≥ 〈x, y〉 for all x, y ∈ Rd.

• [f(x) + f∗(y) = 〈x, y〉] ⇔ [y ∈ ∂f(x)] ⇔ [x ∈ ∂f∗(y)]

Proof.

• By definition: f∗(y) = supx′ 〈x′, y〉−f(x′) ≥ 〈x, y〉−f(x). So we have the desired inequality
with equality iff when x is optimal in the supremum. By symmetry, y is then optimal when
computing f = f∗∗ from f∗ by conjugation.

• Let now x be a point that attains the supremum for computing f∗(y). Then:

f∗(y) = 〈x, y〉 − f(x) ≥
〈
x′, y

〉
− f(x′) ∀x′

The inequality is equivalent to

f(x′) ≥ f(x) +
〈
x′ − x, y

〉
∀x′

and this is equivalent to y ∈ ∂f(x).

• The relation x ∈ ∂f∗(y) follows by the same argument with roles of f and f∗ swapped.

11.2 Fenchel–Rockafellar duality

Theorem 11.9 (Fenchel–Rockafellar). Let F : Re → R ∪ {∞}, G : Rd → R ∪ {∞} be convex,
A ∈ Re×d. Assume that there is a point x0 ∈ Rd such that G(x0) < ∞, F (Ax0) < ∞, and F
continuous at Ax0. Then:

inf
x∈Rd

F (Ax) +G(x) = max
y∈Re

−F ∗(−y)−G∗(A>y)

and in particular there is a maximizer of the dual problem.

68

Remark 11.10 (Intuition for the form of the dual problem).

inf
x∈Rd

F (Ax) +G(x)

now write F as FL conjugate (pretend that F is lsc):

= inf
x∈Rd

sup
y∈Re
〈Ax,−y〉 − F ∗(−y) +G(x)

now as before, pretend that we can flip order of optimization (one last time)

= sup
y∈Re
−F ∗(−y) + inf

x∈Rd
[〈Ax,−y〉+G(x)]

= sup
y∈Re
−F ∗(−y)− sup

x∈Rd

[
〈
x,A>y

〉
−G(x)]

= sup
y∈Re
−F ∗(−y)−G∗(A>y)

Sketch of proof for Theorem 11.9.

• For simplicity we only consider the case e = d, A = id. Extension to general A can be
done afterwards as additional step.

• If f and g were differentiable, we could look for a point x such that f ′(x) + g′(x) = 0. By
convexity this must be a global minimizer.

• In the non-differentiable, but convex setting, we could look for a point x such that there
exists some y with

−y ∈ ∂f(x), y ∈ ∂g(x).

In this case we find for any z ∈ Rd:

f(z) + g(z) ≥ f(x) + 〈z − x,−y〉+ g(x) + 〈z − x, y〉 = f(x) + g(x)

⇒ x is primal optimal. And:

f(x) + f∗(−y) = 〈x,−y〉 , g(x) + g∗(y) = 〈x, y〉

and therefore

−f∗(−y)− g∗(y) = f(x)− 〈x,−y〉+ g(x)− 〈x, y〉 = f(x) + g(x) ≥ −f∗(−y′)− g∗(y′)

for all y′ ∈ Rd. ⇒ y is dual optimal.

• But: primal minimizer might not exist, and how do we find the right slope y? Let us
prepare an idea:

• Let m := infx[f(x) + g(x)]. If m = −∞, then we must have −f∗(−y) − g∗(y) = −∞ for
all y and thus any y is a dual maximizer and the duality gap is zero. So assume m > −∞.

• Consider now the following sets:

A := {(x, s) ∈ Rd+1|s > f(x)}, B := {(x, s) ∈ Rd+1|s < −g(x) +m}

69

• Intuition: A is set above graph of f . B is set below graph of −g, then shifted upwards by
m.

• We must have: A ∩B = ∅, since otherwise there would be some (x, s) such that

f(x) < s < −g(x) +m and so f(x) + g(x) < m

which violates the definition of the infimum.

• On the other hand: cannot shift B any further upwards, without the two sets intersecting,
since for any m′ > m we can find some x such that f(x) + g(x) < m′.

• A and B are disjoint convex sets, so there must exist a hyperplane that separates them
(i.e. goes between them). (In infinite dimensions this is more complicated.)

• Now show that this provides the dual maximizer:

• Intuition: if surfaces of A and B are ‘smooth’, then slope of hyperplane must be given by
f ′(x) and−g′(x) at some point x where the sets ‘almost touch’. By the above considerations
this is then our dual maximizer.

• Rest of proof: use separation theorem for disjoint convex sets to get existence of separating
hyperplane, use continuity assumption on F , G to show that it is not vertical, so that the
‘slope’ intuition is valid, and can then show by above estimates that the hyperplane gives
a dual maximizer.

• Note: it can happen that no primal minimizer exists, when the closures of A and B do not
touch.

Example 11.11 (Kantorovich transport problem).

Example 11.12 (Entropic transport problem).

Proposition 11.13 (Generalized primal-dual optimality conditions). x ∈ Rd, y ∈ Re are mini-
mizers of primal-dual problem

inf
x∈Rd

F (Ax) +G(x) = sup
y∈Re
−F ∗(−y)−G∗(A>y)

(F , G convex) if and only if

[−y ∈ ∂F (Ax)⇔ Ax ∈ ∂F ∗(−y)] and [A>y ∈ ∂G(x)⇔ x ∈ ∂G∗(A>y)]

70

Proof.

• We use the primal-dual gap and the Fenchel–Young inequality:

[F (Ax) +G(x)] + [F ∗(−y) +G∗(A>y)]

= [F (Ax) + F ∗(−y)− 〈Ax,−y〉]︸ ︷︷ ︸
≥0

+ [G(x) +G∗(A>y)−
〈
x,A>y

〉
]︸ ︷︷ ︸

≥0

≥ 0

• So we have zero if and only if both brackets become zero. By Fenchel–Young this is
equivalent to the above conditions.

Example 11.14 (Kantorovich transport problem).

Example 11.15 (Entropic transport problem).

71

	Introduction
	Literature
	Tentative table of contents

	First contact with optimal transport: the principle of least effort
	Gaspard Monge: piles of sand
	Leonid Kantorovich: cafes in Paris
	Motivation: applications in data analysis

	The Kantorovich optimal transport problem
	Primal problem
	Dual problem

	Mini-introduction: Measures and weak convergence
	Wasserstein spaces
	Wasserstein metric
	Displacement interpolation

	1-Wasserstein problems on graphs
	Kantorovich–Rubinstein duality
	Min-cost flow problem

	Optimal transport in one dimension
	Monge property, monotonous couplings and north-west corner rule
	The cumulative distribution formula for W_1 on chain graphs.

	The Hungarian method
	Intuition and description of the algorithm
	Proof of termination and optimality
	The Birkhoff-von Neumann theorem

	The auction algorithm
	Intuition and description of the algorithm
	Convergence analysis
	Epsilon scaling

	Entropic regularization
	Regularized primal and dual problems
	Sinkhorn algorithm
	Numerical tweaks for the Sinkhorn algorithm

	Mini-introduction: Convex optimization and duality
	Convex functions
	Fenchel–Rockafellar duality

