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Disclaimer

• material selected here is based on personal experience with the subject so far

• need to skip many interesting aspects, mostly skip technical aspects here

• goal is not that all details here will be understood at first pass (many of you will already
know them); important: now get the big picture, can follow up on details on second pass
through notes

• first parts contain no references. any textbook will provide rigorous background.

1 Introduction: Monge and Kantorovich

1.1 Monge formulation of OT

Problem statement. Given a pile of sand and a hole to fill; what is the most efficient way to
fill the hole with the sand?

Mathematical modelling of problem.

• space X in which problem lives

• cost function c : X ×X → R, c(x, y) is amount of work to move one unit of sand from x
to y

• T : X → X indicates for each position x that sand is to be sent to T (x)

• how to describe pile and hole? as probability measures µ, ν ∈ P(X). mass in region

A ⊂ X? µ(A) =

∫
A
dµ

Examples for measures.

• density. let f(x) be height of sand pile at x. then volume in region A given by

µ(A) =

∫
A
f(x) dx

where dx denotes integration against the ‘usual’ Lebesgue measure

• Dirac measure δx, unit mass at x,

δx(A) =

{
1 if x ∈ A,
0 otherwise.

• combination of Diracs, µ :=
∑N

i=1miδxi
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Push-forward.

• if we take mass from x to T (x), how does this transform pile µ?

• denote transformed measure by T#µ: ‘push-forward of µ under T ’

• which mass particles get mapped into A?

T−1(A) := {x ∈ X |T (x) ∈ A}

therefore, T#µ(A) = µ(T−1(A))

Monge problem.

• look for map T that fills hole and causes least amount of work

• to fill the hole, need ν = T#µ

• total work associated with map T : ∫
X
c(x, T (x)) dµ(x)

• so arrive at:
inf

{∫
X
c(x, T (x)) dµ(x)

∣∣∣∣T : X → X,T#µ = ν

}
• main issue: feasible set is highly non-trivial, may even be empty

1.2 Kantorovich formulation

Transport plans.

• new concept: transport plan π ∈ P(X ×X)

– intuition: π(x, y) gives (infinitesimal) amount of mass that goes from x to y

– or: π(A×B) gives amount of mass that goes from A ⊂ X to B ⊂ X

• need that π transports µ onto ν, so need

π(A×X) = µ(A) ∀A ⊂ X, π(X ×A) = ν(A) ∀A ⊂ X.

• can write this with push-forward: let

pi : X ×X → X, (x1, x2) 7→ xi

then find
p−1

1 (A) =
{

(x, y) ∈ X ×X
∣∣∣p1(x, y) ∈ A

}
= A×X

so need for all A ⊂ X that

µ(A) = π(A×X) = π(p−1
1 (A)) = p1#π(A)

and therefore p1#π = µ.

• so the set of admissible transport plans can be written as

Π(µ, ν) := {π ∈ P(X ×X)|p1#π = µ, p2#π = ν}

• Π(µ, ν) 6= ∅ since µ⊗ ν ∈ Π(µ, ν) where

(µ⊗ ν)(A×B) := µ(A) · ν(B).

2



Kantorovich problem.

• cost associated with plan: ∫
X×X

c(x, y) dπ(x, y)

• Kantorovich problem:

inf

{∫
X×X

c(x, y) dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

}
objective is linear, feasible set is non-empty, convex, ‘polyhedral’

Example: discrete setting.

• let X = {x1, . . . , xN}, discrete set of points

• identify P(X) with probability simplex

σN :=

{
µ ∈ RN+

∣∣∣∣∣
N∑
i=1

µi = 1

}
.

measure represented by vector µ ∈ σN :
∑

i µiδxi

• identify Π(µ, ν) with π ∈ RN×N+

∣∣∣∣∣∣
∑
j

πi,j = µi ∀ i,
∑
i

πi,j = νj ∀ j


for convenience introduce row- and column sum operators:

(P1π)i =
∑
j

πi,j , (P2π)j =
∑
i

πi,j

Pi : RN×N → RN , linear, can be represented as discrete matrices.

• c : X ×X → R reduced to matrix in RN×N , by abuse of notation: ci,j := c(xi, xj)∫
X×X

c dπ =
∑
i,j

ci,jπi,j =: 〈c, π〉

• arrive at finite-dimensional linear program; can in principle be solved with standard solvers;
in fact: even a min cost flow problem, for which there are special, more efficient variants
of the simplex algorithm

1.3 Kantorovich duality

Dual problem. We now give a formal derivation of the Kantorovich dual problem. For sim-
plicity consider the discrete case.

• primal problem:
inf

π∈RN×N
+

〈c, π〉 s.t.P1π = µ, P2π = ν

• add Lagrange multipliers φ, ψ ∈ RN for constraints:

= inf
π∈RN×N

+

sup
φ,ψ∈RN

〈c, π〉+ 〈φ, µ− P1π〉+ 〈ψ, ν − P2π〉

• duality theorem for (finite-dimensional) linear programs: can swap order of inf and sup;
also: re-arrange terms

= sup
φ,ψ∈RN

〈φ, µ〉+ 〈ψ, ν〉+ inf
π∈RN×N

+

〈c− P>1 φ− P>2 ψ, π〉
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• here use transpose (or adjoint) of Pi. find for P1:

〈P>1 φ, π〉RN×N := 〈φ, P1π〉RN =
∑
i

φi · (P1π)i =∑
i

φi
∑
j

πi,j =
∑
i,j

φiπi,j =
∑
i,j

(P>1 φ)i,jπi,j

• now explicitly evaluate infimum over π, can do this entry-wise for each i, j:

inf
π∈RN×N

+

∑
i,j

ĉi,jπi,j =
∑
i,j

inf
π∈R+

ĉi,j · π =

{
0 if ĉi,j ≥ 0,

−∞ else
=

{
0 if ĉ ≥ 0,

−∞ else

• so arrive at dual problem:

sup
φ,ψ∈RN

〈φ, µ〉+ 〈ψ, ν〉 s.t. (φi + ψj)︸ ︷︷ ︸
=:(φ⊕ψ)i,j

≤ ci,j ∀ i, j

• continuous version:

sup
φ,ψ:X→R

∫
X
φ dµ+

∫
X
ψ dν s.t. φ(x) + ψ(y) ≤ c(x, y)∀x, y

• A particular property of the dual problem is that it is invariant under constant shifts of
the dual variables, (φ, ψ) → (φ + λ, ψ − λ) for λ ∈ R. The shifted dual variables are still
dual feasible and have the same objective value.

Primal-dual optimality condition.

• from previous derivation know for π ∈ Π(µ, ν) and φ, ψ : X → R with φ⊕ ψ ≤ c that∫
c dπ ≥

∫
φdµ+

∫
ψdν

with equality if and only if π is optimal (primal) plan and (φ, ψ) are dual optimal. so we
have:

0 ≤
∫
c dπ −

∫
φ dµ︸︷︷︸

=dP1π

−
∫
ψ dν︸︷︷︸

=dP2π

=

∫
X×X

[c(x, y)− φ(x)− ψ(y)]︸ ︷︷ ︸
≥0

dπ(x, y)︸ ︷︷ ︸
≥0

• so equality if and only if c(x, y) = φ(x) +ψ(y) π(x, y)-almost everywhere; in discrete case:

[πi,j > 0] ⇔ [ci,j = φi + ψj ]

c-concave functions.

• In dual problem, for fixed ψ, find best φ. Since µ ≥ 0, try to make φ at each point as large
as possible without violating the constraint c ≥ φ⊕ ψ. So set

φ(x) = inf
y∈X

c(x, y)− ψ(y) =: ψc(x).

This is called c-transform (assume here for simplicity that c is symmetric, otherwise need
to define ‘forward and backwards transform’ separately).

• A function φ that can be written as φ = ψc is called c-concave. c-concavity is a strong
structural property and various ‘big’ theorems in OT are derived from special properties of
c-concave functions. For c(x, y) = ‖x− y‖2, φ is c-concave, iff x 7→ ‖x‖2 − φ(x) is convex.

• Alternating maximization of the dual potentials φ and ψ is easy, but not a good opti-
mization algorithm. In fact, φccc = φc, so the iterations become stationary after three
iterations, without guarantee of optimality. The auction and Sinkhorn algorithms can
be interpreted as fixes of this issue, such that alternating dual maximization becomes an
efficient (approximate) algorithm.
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Differentiability of Kantorovich cost.

• Consider function C : P(X)×P(X)→ R, (µ, ν) 7→ infπ∈Π(µ,ν)

∫
c, dπ. Can also be written

via dual:
C(µ, ν) = sup

φ,ψ:X→R,
φ⊕ψ≤c

∫
φdµ+

∫
ψdν

• This is a supremum over a collection of linear functions, parametrized by slopes (φ, ψ).
Convex analysis: C is lower semi-continuous and sub-gradients are given by optimal (φ, ψ).

• For (µ, ν) let (φ, ψ) be optimal duals. Then

C(µ+ δµ, ν) ≥ C(µ, ν) +

∫
φdδµ.

This can in principle be used to predict small changes in transport cost; but careful: this
holds for any dual optimal φ.

• So if δµ is not mean zero, can just add big λ to φ and make this as large as we want.
Consistent: C(µ+ δµ, ν) =∞ if µ+ δµ /∈ P(X): there is no feasible transport plan.

• If δµ has zero mean and φ is unique up to constant shifts (e.g. in setting of Benier theo-
rem) then this yields a first order estimate. But no simple regularity theory as for finite-
dimensional differentiable functions.

1.4 Relation between Monge and Kantorovich problem; Brenier’s theorem

Kantorovich as relaxation of Monge

• for µ, ν ∈ P(X), assume T : X → X is such that T#µ = ν, then define measure by

π := (id, T )#µ where (id, T ) : X → X ×X, x 7→ (x, T (x))

• find: p1#π = p1#(id, T )#µ = [p1 ◦ (id, T )]#π = id# µ = µ
likewise: p2#π = p2#(id, T )#µ = [p2 ◦ (id, T )]#π = T#µ = ν
so π ∈ Π(µ, ν).

• compare transport costs:∫
X
c(x, T (x)) dµ(x) =

∫
X

[c ◦ (id, T )](x) dµ(x) =

∫
X×X

c d[(id, T )#µ](x, y) =

∫
X×X

c dπ

here we used the change of variables formula for push-forward measures

• so each Monge transport map (not necessarily optimal) induces a Kantorovich transport
plan with the same cost. we find:

inf
T :X→R,
T#µ=ν

∫
X
c(x, T (x)) dµ(x) ≥ inf

π∈Π(µ,ν)

∫
X×X

c(x, y) dπ(x, y)

this inequality can be strict, in particular if there are no feasible transport maps.

Brenier’s theorem.

• In special cases it can be shown that the above inequality is in fact an equality and that
the optimal Kantorovich plan is indeed induced by an optimal Monge map. For the special
case of X ⊂ Rd with c(x, y) = ‖x− y‖2 this is called Brenier’s theorem.

• Assume that µ has a Lebesgue density (a slightly weaker condition would suffice) and that µ
an ν ‘decay fast enough to zero as ‖x‖ → +∞’. Then the minimizing π in the Kantorovich
problem is unique. It has the form π = (id, T )#µ for a map T : X → X with T#µ = ν.

• In addition, T is the gradient of a convex potential φ : X → R, i.e. T = ∇φ. (At least
Lebesgue-almost everywhere, and φ may be non-differentiable on a µ-negligible set.)

• This can be proved via the above primal-dual relation and indeed the convex potential
φ is very closely related to the dual Kantorovich potential φ̂ in the previous section via
φ(x) = 1

2(‖x‖2 − φ̂(x)).
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Semi-discrete transport.

• As above, let X ⊂ Rd, c(x, y) = ‖x − y‖2, let µ = f · L (where L denotes the Lebesgue
measure) and ν =

∑
imiδyi .

• By Brenier’s theorem, the optimal π is unique and induced by a map T , π = (id, T )#µ.
Clear: T must be piecewise constant, mapping regions Ci ⊂ X to the mass locations yi.

• This might model assignments of students (a lot of them, essentially ‘continuously’ dis-
tributed over the country or city) to schools (discrete centers), or customers to supermar-
kets and similar situations with continuous demand and discrete supply.

• Locally, at first, customers simply want to go to the nearest market, where c(x, yi) =
minj c(x, yj). So customers in

Vi := {x ∈ X|c(x, yi) = min
j
c(x, yj)}

would all go to market i. The sets {Vi}i are called Voronoi cells. But then the demand
µ(Vi) might not match the supply mi. Economically, we need to introduce prices to act
as additional incentive in addition to travel distance, to influence customers decisions.
If µ(Vi) > mi, then the market i should raise its prices to ‘repulse’ some customers, if
µ(Vi) < mi, then lower the prices to attract near customers from other nearby markets.
OT provides a natural description of this phenomenon.

• By the primal-dual optimality relation, one has c = φ ⊕ ψ π-almost everywhere. The
optimal φ can be written as c-transform of ψ, so get

φ(x) = ψc(x) = min
i
c(x, yi)− ψi.

For a given x, mass can only be transported to some yi that is minimizing in this expression.
I.e. location i can only receive mass from within the region

Ci(ψ) := {x ∈ X|c(x, yi)− ψi = min
j
c(x, yj)− ψj}.

Now we see that −ψ acts as the aforementioned price.

• For the squared distance, the above condition can be written as

x ∈ Ci(ψ) iff 〈x, yi〉 − 1
2(‖yi‖2 − ψi) = max

j
〈x, yj〉 − 1

2(‖yj‖2 − ψj).

From this we deduce that the boundaries between adjacent cells are straight lines and that
in fact each cell is a convex polytope.

• Eliminating φ via the c-transform, one can obtain a finite-dimensional unconstrained dual
problem in terms of ψ:

sup
ψ∈RN

J(ψ) where J(ψ) :=

∫
ψcdµ+

∑
i

ψimi

The integral can be written as∑
i

∫
Ci(ψ)

[
‖x− yi‖2 − ψi

]
dµ(x).

One can show that J is differentiable and

∂ψi
J(ψ) = −

∫
Ci(ψ)

dµ+mi.

This corresponds nicely with the economic interpretation: if the demand µ(Ci) is lower
than the supply mi, the partial derivative for ψi is positive.

• Note that if we add the same constant λ to all prices, then all Ci remain the same. Econom-
ically, this invariance is not so realistic. Eventually, customers will stop going to the market
entirely and try to find alternatives. This setting might be modelled more appropriately
with unbalanced transport.
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2 Wasserstein distance

2.1 Definition and metric axioms

Definition.

• Let (X, d) be a metric space, e.g. X ⊂ Rd, d(x, y) = ‖x− y‖2 or a curved surface.

• Let p ∈ [1,∞), µ, ν ∈ P(X). Set:

Wp(µ, ν) := inf

{∫
X×X

dp(x, y) dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

}1/p

• claim: Wp is a metric on P(X), called Wasserstein distance (technically: a metric on
probability measures with finite p-th moment)

Symmetry, definiteness.

• Since d(x, y) ≥ 0, and π ≥ 0 for all admissible plans, one has Wp(µ, ν) ≥ 0.

• Symmetry, Wp(µ, ν) = Wp(ν, µ): let π ∈ Π(µ, ν), set π̂ := (p2, p1)#π for which ones finds
π̂ ∈ Π(ν, µ). Further: ∫

dp dπ̂ =

∫
dp ◦ (p2, p1)dπ =

∫
dpdπ

where we used the symmetry of d. Consequently, for any plan in Π(µ, ν), the ‘reversed
plan’ is in Π(ν, µ), has the same transport cost, and vice versa. Hence, both problem have
the same infimal value.

• Definiteness, part 1: Wp(µ, µ) = 0. In this case, π = (id, id)#µ is a feasible transport plan.
We get:

0 ≤Wp(µ, µ)p ≤
∫
X×X

dp dπ =

∫
X
dp ◦ (id, id) dµ =

∫
X
d(x, x)p dµ(x) = 0

• Definiteness, part 2: [Wp(µ, ν) = 0] ⇒ [µ = ν]. Let π be an optimal plan for Wp(µ, ν)
(do not address existence here, argument can also be made with ‘almost optimal’ plans).
Then:

0 =

∫
X×X

d(x, y)p dπ(x, y)

Since d ≥ 0 and π ≥ 0, this is only possible if d(x, y) = 0 π(x, y)-almost everywhere. So
π must live exclusively on the ‘diagonal’ and thus have the form π = (id, id)#ρ for some
ρ ∈ P(X). Now use π ∈ Π(µ, ν): µ = p1#π = ρ = p2#π = ν.

2.2 Triangle inequality

The metric d must satisfy

d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

The same must hold for Wp on triplets of probability measures µ, ν, ρ ∈ P(X).

Simple proof for transport maps.

• We sketch the proof for the simple case where the optimal plans for Wp(µ, ν) and Wp(ν, ρ)
are induced by maps S, T : X → X, S#µ = ν, T#ν = ρ.
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• In this case, (T ◦ S)#µ = ρ and so T ◦ S is a feasible (not necessarily optimal) transport
map from µ to ρ for Wp(µ, ρ). Therefore we get

Wp(µ, ρ) ≤
[∫

d(x, T (S(x)))p dµ(x)

]1/p

≤
[∫

[d(x, S(x)) + d(S(x), T (S(x)))]p dµ(x)

]1/p

≤
[∫

d(x, S(x))p dµ(x)

]1/p

+

[∫
d(S(x), T (S(x)))p dµ(x)

]1/p

= Wp(µ, ν) +

[∫
d(x, T (x))p d(S#µ)(x)

]1/p

= Wp(µ, ν) +Wp(ν, ρ)

Gluing lemma.

• The proof strategy also works when the optimal plans are not map-like. Will not go through
all steps, but merely show how two plans π ∈ Π(µ, ν), λ ∈ Π(ν, ρ) can be ‘composed’.

• We will construct a measure η ∈ P(X ×X ×X) with

(p1, p2)#η = π, (p2, p3)#η = λ.

η(x, y, z) can intuitively be interpreted as (infinitesimal) mass going from x to z via y.

• For simplicity, do this in discrete setting, but same idea works in continuum with slightly
more complex notation, using the disintegration theorem. Denote mass at individual points
by µ(x), π(x, y), et cetera. Then π ∈ Π(µ, ν) implies

∑
y π(x, y) = µ(x) and so forth.

• Consider mass arriving in y after being transported according to π. How should we send
the mass along? Use ‘conditional probability’

λy(z) :=
λ(y, z)

ν(y)

to distribute mass. (In the continuous setting, this conditional probability is provided by
the disintegration.)

• Then we set
η(x, y, z) := π(x, y)

λ(y, z)

ν(y)
=
π(x, y)λ(y, z)

ν(y)

(Be a little careful when η(y) = 0. In this case no mass will arrive at y and no mass will
leave. So simply set η(x, y, z) = 0.)

• Then find ∑
z

η(x, y, z) =
∑
z

π(x, y)λ(y, z)

ν(y)
=
π(x, y)

ν(y)

∑
z

λ(y, z) = π(x, y).

Likewise, find
∑

x η(x, y, z) = λ(y, z) and thus
∑

y η(·, y, ·) ∈ Π(µ, ρ).

• Some things to take away:

– this construction also works in continuum, via disintegration
– evaluating Wasserstein cost of

∑
y η(·, y, ·) yields triangle inequality, similar to above

– perfectly reasonable to have ‘transport plans’ between more than two marginals

2.3 Shortest paths

For x, y ∈ X, a curve γ(x,y) : [0, 1]→ X is called (constant speed) geodesic from x to y if

γ(x,y)(0) = x, γ(x,y)(1) = y, d(γ(x,y)(s), γ(x,y)(t)) = |s− t| · d(x, y)∀ s, t ∈ [0, 1].

We will call (X, d) geodesic, if such curves exist for all pairs (x, y). We will now show: If (X, d)
is geodesic, then so is (P(X),Wp).
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Constructing geodesics.

• For simplicity, assume X ⊂ Rd, d(x, y) = ‖x − y‖, and let the optimal plan π be induced
by a map T , π = (id, T )#µ. Easy to generalize, mostly just more complex notation.

• Intuition for geodesic in P(X) from µ to ν: each mass particle moves along geodesic in X
from initial to final position. Particle at x moves to T (x), so it will move on curve

γ(x,T (x)) : [0, 1]→ X, γ(x,T (x))(t) := (1− t) · x+ t · T (x)

Taking each particle from its initial position x to γ(x,T (x))(t) means we apply the push-
forward of

ft : X → X, ft(x) := γ(x,T (x))(t)

to µ. So our conjectured geodesic takes the form

ρ : [0, 1]→ P(X), ρ(t) := ft#µ.

It is easy to verify: ρ(0) = µ, ρ(1) = ν.

Estimating distances along geodesic.

• How do we estimate the distance between ρ(0) = µ and ρ(s)? Need to guess a transport
map. Clear: particle from x moves to ft(x) = γ(x,T (x))(t), so use this as transport map
candidate: T0,s := fs. We find:

Wp(µ, ρ(s))p ≤
∫
‖T0,s(x)− x︸ ︷︷ ︸

=s(T (x)−x)

‖p dµ(x) = sp
∫
‖T (x)− x‖pdµ(x) = spWp(µ, ν)p

• How about optimal map from ρ(s) to ρ(t)? Mass from fs(x) moves to ft(x). For s < 1 can
show: fs is invertible. So use as candidate: Ts,t := ft ◦ f−1

s . Find:

Wp(ρ(s), ρ(t))p ≤
∫
‖Ts,t(x)− x‖pdρ(s) =

∫
‖ft ◦ f−1

s − id ‖pd(fs#µ)

=

∫
‖ft − fs‖pdµ = |t− s|p

∫
‖T − id ‖pdµ = |t− s|pWp(µ, ν)p.

• With same arguments can bound

Wp(ρ(t), nu)p ≤ (1− t)pWp(µ, ν)p.

• If any of these inequalities were strict, we would violate the triangle inequality. The above
inequalities provide

Wp(µ, ρ(s)) +Wp(ρ(s), ρ(t)) +Wp(ρ(t), ν) ≤Wp(µ, ν)

whereas the triangle inequality gives the opposite inequality. Thus, all inequalities above
must be equalities.

• The proof strategy generalizes to non-map transport plans and more general metric spaces.

2.4 Continuity equation and Benamou–Brenier formula

Continuity equation.

• Let X ⊂ Rd, d(x, y) = ‖x − y‖, set p = 2 for simplicity. Consider a curve of measures
ρ(t) := γ(t, ·)#µ, assume γ differentiable in time, γ(t, ·) invertible.
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• A particle starting at t = 0 at x will move with along the path t 7→ γ(t, x). Therefore its
(Lagrangian) velocity is γ̇(t, x). But at time t it is at γ(t, x), so an external observer (who
cannot distinguish the mass particles) will see the (Eulerian) velocity field

v(t, ·) := γ̇(t, ·) ◦ γ(t, ·)−1.

• If all mass particles of ρ follow a (Eulerian) velocity field v, (ρ, v) will satisfy the continuity
equation

∂tρ+ div(v · ρ) = 0,

in our case with the boundary conditions ρ(0) = µ and ρ(1) =: ν := γ(1, ·)#µ.

• This equation is to be understood in a distributional sense. This means that for every
differentiable test function φ ∈ C1([0, 1]×X) one imposes that∫ 1

0

∫
X
∂tφ(t, ·) dρ(t) dt+

∫ 1

0

∫
X
∇φ(t, ·) · v(t, ·) dρ(t) dt =

∫
X
φ(1, ·) dν −

∫
X
φ(0, ·) dµ

• Now we show that ρ(t) := γ(t, ·)#µ and v(t, ·) := γ̇(t, ·) ◦ γ(t, ·)−1 solve the continuity
equation. Set F (t) :=

∫
X φ(t, ·) dρ(t). Then∫ 1

0

[
d
dt
F (t)

]
dt = F (1)− F (0)

and

F (1) =

∫
φ(1, ·)dν, F (0) =

∫
φ(0, ·)dµ.

For F (t) one has

F (t) =

∫
X
φ(t, ·) d(γ(t, ·)#µ) =

∫
X
φ(t, γ(t, ·)) dµ

and so
d
dt
F (t) =

∫
X

[∂tφ(t, γ(t, ·)) +∇φ(t, γ(t, ·)) · γ̇(t, ·)] dµ

=

∫
X

[
∂tφ(t, ·) +∇φ(t, ·) · γ̇(t, γ(t, ·)−1)︸ ︷︷ ︸

=v(t,·)

]
dρ(t)

Benamou–Brenier formula.

• Geodesics in (P(Rd),W2) are of the above form and therefore solve the continuity equa-
tion. Question: which of the solutions of the continuity equation yields the shortest path?
Answer: the one with the lowest time-average kinetic energy (in this case also called:
action).

• For a pair (ρ, v) that solves the continuity equation, set

BB(ρ, v) :=

∫ 1

0

∫
X
‖v(t, ·)‖2 dρ(t) dt.

Then one has

W2(µ, ν)2 = inf {BB(ρ, v)|(ρ, v) solve CE between µ and ν}

• Sketch of inequality BB ≤ W : take (ρ, v) generated by shortest path. Recall: γ(t, ·) =
(1− t) id +t ·T . Lagrangian velocity: γ̇(t, ·) = T − id. Have already shown that (ρ, v) solve
the continuity equation. Now plug into BB to get:

inf BB ≤ BB(ρ, v) =

∫ 1

0

∫
X
‖v(t, ·)‖2dρ(t) dt =

∫ 1

0

∫
X
‖γ̇(t, ·) ◦ γ(t, ·)−1‖2dγ(t, ·)#µdt

=

∫ 1

0

∫
X
‖γ̇(t, ·)‖2 dµdt =

∫ 1

0

∫
X
‖T − id ‖2 dµdt = W2(µ, ν)2
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• For converse inequality, for given (ρ, v) follow the individual mass particles. Let γ(t, x) be
the solution of the following ODE:

γ(0, x) = x, γ̇(t, x) = v(t, γ(t, x))

This means, we recover the Lagrangian coordinate from the Eulerian velocity field. (Math-
ematically this only works if v if is sufficiently regular. Need some smoothing arguments in
rigorous proof.) Can then show with similar calculations as above: ρ(t) = γ(t, ·)#ρ(0) =
γ(t, ·)#µ. Now look at BB functional:

BB(ρ, v) =

∫ 1

0

∫
X
‖v(t, ·)‖2dρ(t) dt =

∫ 1

0

∫
X
‖v(t, γ(t, ·))‖2dµ dt

=

∫
X

∫ 1

0
‖v(t, γ(t, ·))‖2dt dµ =

∫
X

∫ 1

0
‖γ̇(t, ·))‖2dt dµ ≥

∫
X

∥∥∥∥∫ 1

0
γ̇(t, ·))dt

∥∥∥∥2

dµ

≥
∫
X
‖γ(1, ·)− γ(0, ·)‖2 dµ ≥W2(µ, ν)2

where we used Jensen’s inequality when pulling out ‖ · ‖2 from the integral, and the fact
that γ(0, ·) = id and that γ(1, ·) is a feasible transport map from µ to ν.
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3 Entropic optimal transport

3.1 Introduction

Definition 3.1 (Setting).

• X will be a compact metric space, C(X) denotes continuous (real-valued) functions

• M(X),M+(X), P(X) will be (signed) Radon measures, non-negative measures, and prob-
ability measures, respectively

• We will use a lot the duality between continuous functions and measures on X.

• c ∈ C(X ×X) will be a continuous cost function

• p1, p2 denote the marginal projection operators:∫
X
φ(x)d(p1γ)(x) :=

∫
X×X

φ(x)dγ(x, y)

correspond to push-forward by map (x1, x2) 7→ xi.

• For finite spaces X = {x1, . . . , xn}, we usually identifyM(X) ' C(X) ' Rn (and likewise
with product spaces). Then for µ ∈M(X) we denote by µi the mass at xi, et cetera.

Definition 3.2 (KL divergence). Let

ϕ : R→ [0,∞], s 7→


s log(s)− s+ 1 for s > 0,

1 for s = 0,

+∞ for s < 0.

Note that ϕ is convex, proper and lower-semicontinuous. Then for µ, ν ∈M(X), the Kullback–
Leibler (KL) divergence of µ w.r.t. ν is given by

KL(µ|ν) :=

{∫
X ϕ

(
dµ
dν

)
dν if µ� ν, ν ≥ 0,

+∞ else.

Definition 3.3 (Entropic transport problem). For µ, ν ∈ P(X), a continuous cost function
c ∈ C(X × X), regularization strength ε > 0 and a reference measure ρ ∈ M+(X × X), the
entropic transport problem is given by

Cε(µ, ν) := inf

{∫
X×X

c dγ + ε KL(γ|ρ)

∣∣∣∣γ ∈ Γ(µ, ν)

}
Remark 3.4 (Motivation).

• Will show: entropic transport problem has unique solution; gives stability of solutions
w.r.t. fluctuations in marginals or cost function; even differentiability. Useful for down-
stream applications.

• Can be solved efficiently with simple numerical method: Sinkhorn algorithm

• Will allow for more reliable statistical estimation of optimal transport between sampled
empirical measures. (Beyond the scope of this course.)

Remark 3.5 (Choice of reference measure). There are many different potential choices for the
reference measure ρ ∈M+(X ×X). Common choices are:

(i) For a finite space X = {x1, . . . , xn} one often uses the Shannon entropy, i.e. one sets ρ to
be the counting measure, ρi,j = 1.

(ii) In some applications, if X ⊂ Rd, it may be natural to choose ρ = L2dx(X ×X). This will
only work well, if all measures of interest µ and ν are dominated by the Lebesgue measure.
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(iii) The most agnostic choice is probably ρ = µ ⊗ ν. Then, the optimal objective is always
finite (for bounded cost functions) and we will show that regular dual solutions exist.

Lemma 3.6. KL is jointly weak* lower-semicontinuous and convex in both arguments. For fixed
ν ∈M+(X), µ 7→ KL(µ|ν) is strictly convex.

Proof. Joint lsc follows from [Ambrosio et al., 2000, Theorem 2.34] since the function ϕ is non-
negative, convex and lower-semicontinuous. Join convexity follows from the fact that the function
(r, s) 7→ s log(s/r)− s+ r. Strict convexity in the first argument follows from strict convexity of
ϕ.

Lemma 3.7. If the infimal objective is finite, the entropic optimal transport problem has a
unique solution.

Proof. Since Γ(µ, ν) is bounded (and weak* closed), any minimizing sequence has weak* cluster
points that also lie in Γ(µ, ν). Clearly, the map γ 7→

∫
X×X cdγ is continuous. By the above

Lemma the KL term is lower-semicontinuous. Hence, any cluster point must be a minimizer.
Assume the objective is finite. Let γ1, γ2 ∈ Γ(µ, ν) be two minimizers, and therefore have
KL(γi|ρ) < ∞. By linearity of the term γ 7→

∫
X×X cdγ and strict convexity of the KL-term, if

γ1 6= γ2, then (γ1 + γ2)/2 would be an even better candidate. Hence γ1 = γ2 and the minimizer
must be unique.

Remark 3.8. Choose c(x, y) = d(x, y)p for a metric d on X and ε > 0. Then the map

Wε : P(X)2 3 (µ, ν) 7→ Cε(µ, ν)1/p

is no longer a metric on P(X). (Unless something really boring happens, like X being only a
single point and choosing ρ to be the probability measure on that single point.)
In general one finds that Wε(µ, µ) > 0 and that it violates the triangle inequality. The former
issue (along with something called ‘entropic bias’) can be fixed by the Sinkhorn divergence [Feydy
et al., 2018]. While they do not satisfy the triangle inequality, they are a useful (and statistically
robust) notion of similarity in many applications. The question of a metric induced by entropic
optimal transport is (to my knowledge) still open.

3.2 Convergence as ε→ 0

Definition 3.9 (Setting). Let (εn)n∈N be a strictly positive, decreasing sequence with limit
limn→∞ εn = 0. Let µ, ν ∈ P(X) and choose as reference measure ρ = µ⊗ ν. Set

En(γ) :=

∫
X×X

c dγ + εn KL(γ|µ⊗ ν) + ιΓ(µ,ν)(γ),

E(γ) :=

∫
X×X

c dγ + ιΓ(µ,ν)(γ).

Let (γn)n∈N be a sequence of minimizers of En (existence shown above, with finite optimal
objective). We will now show that, up to selection of subsequences, (γn)n converges to some γ
that minimizes E, and that the optimal objectives converge.

Proposition 3.10 (Finite space). Let X = {x1, . . . , xn} be a finite space. Then the sequence
(γn)n∈N is precompact and any cluster point γ minimizes E. The optimal objectives converge.

Proof. For simplicity, w.l.o.g. assume that µ and ν are strictly positive (otherwise, simply remove
points xi where µi = 0 from the first marginal space, and similarly with the second marginal).
Then ρ is strictly positive, and by finiteness of X, ρ is bounded away from zero by some finite
constant. Therefore, by continuity of ϕ on its domain [0,∞], the domain of

Rn×n 3 γ 7→ KL(γ|ρ) =
∑
i,j

ϕ(γi,j/ρi,j) · ρi,j

is Rn×n+ and it is continuous on this domain. The set Γ(µ, ν) ⊂ Rn×n+ is compact and therefore
KL(·|ρ) is bounded on Γ(µ, ν) (say, by some constant C < ∞). Therefore, En(γn) − E(γn) ∈
[0, εn · C].
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Since Γ(µ, ν) is compact and non-empty, (γn)n will have cluster points (that also lie in Γ(µ, ν)).
Let now γ be any such cluster point, for simplicity denote by (γn)n a convergent subsequence.
Clearly, E is continuous on Γ(µ, ν). Therefore we find:

lim
n
En(γn) = lim

n
E(γn) = E(γ)

Finally, if there were some γ̃ ∈ Γ(µ, ν) with E(γ̃) < E(γ), then for sufficiently big n (and some
suitable δ > 0) we would have

En(γ̃) = E(γ̃) + εn ·KL(γ̃|µ⊗ ν) ≤ E(γ̃) + εn · C < E(γ)− δ ≤ E(γn) ≤ En(γn)

which contradicts the optimality of γn for En. Therefore, γ must minimize E.

For continuous X the situation is more involved, since KL(·|µ⊗ν) will in general not be bounded
(or even finite) on Γ(µ, ν) and might be infinite for minimizers of E. We will show convergence
of minimizers by means of Γ-convergence. Much more general versions of the following result
are possible (on non-compact spaces, with less regular cost functions, and with approximate
marginals). We focus on a few key properties of the problem here.

Lemma 3.11. Let (γn)n be a sequence inM(X ×X) that converges weak* to γ ∈M(X ×X).
Then

lim inf
n

En(γn) ≥ E(γ).

Proof. Since Γ(µ, ν) is weak* closed, if γ /∈ Γ(µ, ν), we will eventually have that γn /∈ Γ(µ, ν)
and thus E(γ) = En(γn) =∞ for sufficiently large n. So assume γ ∈ Γ(µ, ν) from now on.
Then, using weak* continuity of the linear cost term and non-negativity of the entropy term, we
obtain

lim inf
n

En(γn) = lim inf
n

∫
X×X

c dγn + εn ·KL(γn|µ⊗ ν)

≥ lim
n

∫
X×X

c dγn = E(γ).

The lim-sup inequality is considerably more involved. For γ ∈ Γ(µ, ν) with KL(γ|µ⊗ ν) =∞ we
need to construct an approximating sequence (γn)n with finite entropy (diverging in a controlled
way) while preserving the marginals. We do this here via the block approximation trick [Carlier
et al., 2017].

Definition 3.12 (Block approximation). Let γ ∈ Γ(µ, ν). For a length scale L > 0, denote by
{XL,i}nL

i=1 a (measurable) partition of X into nL sets, each of which with diameter at most L.
Such a partition exists by compactness of X. Denote in the following

µL,i := µ(XL,i), νL,i := ν(XL,i), γL,i,j := γ(XL,i ×XL,j),

and finally

λL,i,j :=

{
µxXL,i⊗νxXL,j

µL,i·νL,j
if µL,i · νL,j > 0,

0 else.

Then the block approximation of γ at scale L is given by

γL :=

nL∑
i,j=1

γL,i,j · λL,i,j .

Lemma 3.13. γL ∈ Γ(µ, ν).
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Proof. First observe: γL ≥ 0. Next, observe that

nL∑
j=1

γL,i,j =

nL∑
j=1

γ(XL,i ×XL,j) = γ(XL,i ×X) = µ(XL,i) = µL,i.

In particular, this implies γL,i,j > 0 ⇒ µL,i > 0. And of course likewise for the other marginal.
Now, for any measurable A ⊂ X one has

γL(A×X) =

nL∑
i,j=1

γL,i,j · λL,i,j(A×X)

=
∑

i,j=1,...,nL:
γL,i,j>0

γL,i,j
µL,i · νL,j

· µ(XL,i ∩A) · ν(XL,j ∩X)

=
∑

i,j=1,...,nL:
γL,i,j>0

γL,i,j
µL,i

· µ(XL,i ∩A)

=
∑

i=1,...,nL:
µL,i>0

µ(XL,i ∩A) = µ(A).

The same computation applies for the second marginal, which completes the proof.

Lemma 3.14. Equip X ×X with the metric D((x1, x2), (y1, y2)) := d(x1, y1) + d(x2, y2) (which
yields a compact metric space). Then Wp(γ, γL) ≤ 2L and in particular γL

∗
⇀ γ as L→ 0.

Proof. A potential transport plan from γ to γL involves moving mass only within products of
partition cells XL,i×XL,j , which have diameter bounded by 2L in D. This yields the Wasserstein
bound, which implies the weak* convergence.

Lemma 3.15. KL(γL|µ⊗ ν) ≤ 2 log(nL).

Proof.

KL(γL|µ⊗ ν) =

∫
X×X

ϕ
(

dγL
dµ⊗ν

)
dµ⊗ ν

=
∑

i=1,...,nL:
µL,i>0

∑
j=1,...,nL:
νL,j>0

ϕ

(
γL,i,j

µL,i · νL,j

)
· µL,i · νL,j

=
∑

i=1,...,nL:
µL,i>0

∑
j=1,...,nL:
νL,j>0

[
γL,i,j · log

(
γL,i,j

µL,i · νL,j

)
− γL,i,j + µL,i · νL,j

]

≤ −
∑

i=1,...,nL:
µL,i>0

∑
j=1,...,nL:
νL,j>0

γL,i,j · [log(µL,i) + log(νL,j)]

≤ −
∑

i=1,...,nL:
µL,i>0

µL,i · log(µL,i)−
∑

j=1,...,nL:
νL,j>0

νL,j · log(νL,j)

≤ −2 log(1/nL) = 2 log(nL)

where we used that RnL
+ 3 p 7→

∑nL
i=1 pi log(pi) is convex and minimized among ‘probability

vectors’ by the ‘uniform’ one pi = 1/nL.

Using now the block approximation and its basic properties that we established, we conclude:

Lemma 3.16 (Lim sup). For any γ ∈ Γ(µ, ν) there is a sequence (γn)n, converging weak* to γ,
such that

lim
n
En(γn) = E(γ).
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Proof. Let (Ln)n be a positive sequence. Then

En(γn) ≤
∫
X×X

c dγn + 2εn log(nLn).

Choosing now (Ln)n decreasing, such that εn log(nLn)→ 0, and with the weak* convergence of
(γLn)n to γ one obtains the result.

Together, lim-inf and lim-sup inequality provide:

Proposition 3.17. Let (γn)n be a sequence of minimizers for En (their existence was established
earlier). Then the sequence is weak* precompact and any cluster point minimizes E.

Proof. Weak* precompactness is obtained from compactness of Γ(µ, ν). Any cluster point γ then
satisfies

lim inf
n

En(γn) ≥ E(γ).

(Restriction to subsequences is no issue here, since En(γn) can be seen to be non-increasing, and
thus all subsequences have the same limit inferior.) If there were some other γ̃, with E(γ̃) < E(γ),
then a recovery sequence (γ̃n)n for γ̃, constructed via the block approximation as above, would
satisfy

E(γ̃) = lim
n
En(γ̃n)

and thus for sufficiently big n one would obtain the contradiction

En(γ̃n) < En(γn).

3.3 Duality

Theorem 3.18 (Fenchel–Rockafellar). Let (X,X∗), (Y, Y ∗) be two couples of topologically
paired spaces. Let A : X → Y be a bounded linear operator. Let G and F be proper convex
functions, defined on X and Y respectively, with values in (−∞,∞]. If there exists x ∈ X such
that G is finite at x and F is continuous at Ax, then

inf
x∈X

F (Ax) +G(x) = sup
y∗∈Y ∗

−F ∗(−y∗)−G∗(A∗y∗).

The supremum is attained.

Proposition 3.19 (Duality for entropic OT). A dual problem for the entropic OT problem is
given by

Cε(µ, ν) = sup

{∫
X
φ dµ+

∫
X
ψ dν − ε

∫
X×X

[
exp

(
φ⊕ ψ − c

ε

)
− 1

]
dρ
∣∣∣∣φ, ψ ∈ C(X)

}
.

Here φ⊕ ψ denotes the function (x, y) 7→ φ(x) + ψ(y).

Proof. Setting

F :M(X)2 → (−∞,∞], F = ι{(µ,ν)},

G :M(X ×X)→ (−∞,∞], γ 7→
∫
X×X

c dγ + ε KL(γ|ρ),

A :M(X ×X)→M(X)2, γ 7→ (p1γ, p2γ)

we can write the entropic transport problem as

inf
γ∈M(X×X)

F (Aγ) +G(γ).

We find that we cannot directly apply the FR duality theorem, since F is nowhere continuous.
We will still proceed for now and observe in the end, that we can indeed apply the theorem in
the ‘reverse’ direction by flipping the roles of primal and dual problem (and keeping careful track
of minus signs).
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We find:

F ∗((φ, ψ)) = sup
(ρ,σ)∈M(X)2

∫
X
φ dρ+

∫
X
ψ dσ − ι{(µ,ν)}(ρ, σ) =

∫
X
φ dµ+

∫
X
ψ dν.

For the adjoint of A:

〈(φ, ψ), Aγ〉 =

∫
X
φdp1γ +

∫
X
ψdp2γ =

∫
X×X

[φ(x) + ψ(y)]dγ(x, y)

and so A∗(φ, ψ) = φ⊕ ψ. For G we first observe that G(γ) =
∫
X×X c dγ + εKL(γ|µ⊗ ν). That

is, it is obtained from KL first by a positive re-scaling, and then by adding a linear term. Using
the simple relations

[f(x) = ε · g(x)] ⇒ [f∗(z) = ε · g∗(z/ε)]

[f(x) = 〈a, x〉+ g(x)] ⇒ [f∗(z) = g∗(z − a)]

we obtain that G∗(ξ) = εKL∗((ξ − c)/ε|ρ) where KL∗ denotes the conjugation with respect to
the first argument. One obtains that

KL∗(ξ|ρ) = sup
γ∈M(X×X)

∫
ξ dγ −KL(γ|ρ)

= sup
u∈L1(ρ)

∫
[ξ · u− ϕ(u)] dρ =

∫
ϕ∗(ξ) dρ

and a brief explicit computation yields that ϕ∗(s) = exp(s)− 1. Then, formally writing down

sup
(φ,ψ)∈C(X)2

−F ∗(−(φ, ψ))−G∗(A∗(φ, ψ))

yields the above expression for the dual problem.
It remains to show that we can actually apply the FR theorem. For this we now observe that
the functions F ∗ and G∗ are globally finite and continuous, hence the ‘reverse constraint quali-
fications’ are satisfied. This implies that FR also provides the existence of optimal entropic OT
plans, which we had already established earlier by direct methods.

Proposition 3.20 (Primal-dual optimality conditions for Fenchel–Rockafellar duality). x and
y∗ are primal and dual optimal in the FR-primal-dual problem pair above if and only if

[Ax ∈ ∂F ∗(−y∗)⇔ −y∗ ∈ ∂F (Ax)] ∧ [x ∈ ∂G∗(A∗y∗)⇔ A∗y∗ ∈ ∂G(x)].

Proof. The Fenchel–Young inequality states that

F (x) + F ∗(y∗) ≥ 〈x, y∗〉

with equality if and only if x ∈ ∂F ∗(y∗) or equivalently y∗ ∈ ∂F (x).
Now consider the primal dual gap of the above problem pair:

0 ≤ [F (Ax) +G(x)]− [−F ∗(−y∗)−G∗(A∗y)]

= [F (Ax) + F ∗(−y∗) + 〈Ax,−y∗〉] + [G(x) +G∗(A∗y) + 〈x,A∗y∗〉]

By the Fenchel–Young inequality, this can be zero if and only if both parentheses are zero, which
happens if and only if the subdifferential conditions for both apply, which are the stated PD
optimality conditions.

Proposition 3.21 (Application to entropic OT). A pair γ ∈ M(X ×X), (φ, ψ) ∈ C(X)2 are
primal-dual optimal if and only if

p1γ = µ, p2γ = ν, γ = exp([φ⊕ ψ − c]/ε) · ρ.

Proof. Consider the condition Aγ ∈ ∂F ∗(−(φ, ψ)). Since F ∗ is the linear pairing (α, β) 7→
〈α, µ〉+〈β, ν〉, it is subdifferential is the singleton (µ, ν) at all points. With A being the marginal
projection operator, this translates to the two marginal constraints for γ.
The function G∗(ξ) = ε

∫
[exp([ξ − c]/ε)− 1] dρ is differentiable with
d
dt
G∗(ξ + t · η)|t=0 =

∫
exp([ξ − c]/ε)ηdρ.

The subdifferential is therefore given by ∂G∗(ξ) = exp([ξ − c]/ε)ρ. Inserting now the argument
ξ = φ⊕ ψ yields the expression for γ.
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3.4 Sinkhorn algorithm

Remark 3.22 (Choice of reference measure and existence of optimal dual solutions). For this
section we fix the choice ρ = µ ⊗ ν. This will have some useful consequences, in particular
existence of continuous (and even more regular of c is ‘nice’) optimal dual solutions.

The Sinkhorn algorithm can be interpreted as alternating block optimization on the dual problem,
alternatingly fixing one of the functions φ or ψ and optimizing over the other.

Lemma 3.23. For fixed ψ ∈ C(X), an optimal φ in the dual entropic OT problem is given by

φ(x) = −ε · log

(∫
X

exp([ψ(y)− c(x, y)]/ε) dν(y)

)
.

Of course, the corresponding Lemma for the second marginal also holds.

Proof. The dual entropic OT objective is concave and differentiable. Hence, its maximizers can
be determined by studying the first order optimality conditions. Let

J(φ, ψ) :=

∫
φ dµ+

∫
ψdν − ε

∫
X×X

[exp([φ⊕ ψ − c]/ε)− 1] dµ⊗ ν.

One finds that

d
dt
J(φ+ t · η, ψ)|t=0 =

∫
X
η dµ−

∫
X×X

exp([φ(x) + ψ(y)− c(x, y)]/ε)η(x)dµ(x)dν(y)

=

∫
X

[
1− exp(φ(x)/ε)

∫
X

exp([ψ(y)− c(x, y)]/ε)dν(y)

]
η(x) dµ(x)

For this to be zero for all η ∈ C(X), we need that the bracket is zero µ-almost everywhere.
Resolving this expression for φ yields the given expression.

Definition 3.24 (Sinkhorn algorithm). For some initial ψ(0) ∈ C(X), set recursively for ` ∈
{0, 1, . . .},

φ(`+1)(x) = −ε · log

(∫
X

exp([ψ(`)(y)− c(x, y)]/ε) dν(y)

)
,

ψ(`+1)(y) = −ε · log

(∫
X

exp([φ(`+1)(x)− c(x, y)]/ε) dµ(x)

)
.

We refer to this procedure as the Sinkhorn algorithm.

Remark 3.25 (Primal interpretation of dual optimality condition). Recall the primal-dual op-
timality condition γ = exp([φ⊕ψ− c]/ε) · µ⊗ ν and the marginal constraint p1γ = µ. Together
these imply for all η ∈ C(X),∫

X
η(x) dµ(x) =

∫
X×X

η(x) dγ(x, y)

=

∫
X

[
exp(φ(x)/ε)

∫
X

exp([ψ(y)− c(x, y)]/ε)dν(y)

]
η(x) dµ(x).

This is precisely the dual optimality condition for φ obtained in the above lemma. Hence, this
dual optimality condition has the primal interpretation that φ is chosen just right, such that the
implied primal γ has the prescribed first marginal µ. Alternating maximization therefore also
has the interpretation of alternating re-scaling. Consequently, the Sinkhorn algorithm is also
known as iterative proportional fitting procedure.
Finally, these re-scalings can also be interpreted as KL projections of the ‘old’ γ onto one of the
two marginal constraints, and thus the algorithm can also be interpreted as alternating projection
method.
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Remark 3.26 (Entropic c-transform). The map ψ 7→ ψc,ν,ε := φ where φ is given by the locally
optimal φ,

φ(x) = −ε · log

(∫
X

exp([ψ(y)− c(x, y)]/ε) dν(y)

)
is sometimes referred to as entropic c-transform.
The ‘classical’ c-transform is given by

ψc(x) = inf
y∈X

c(x, y)− ψ(y)

and it plays an important role in the analysis of unregularized optimal transport and some
numerical methods, such as the auction algorithm.
Applying the classical c-transform in unregularized optimal transport will however always become
stationary after at most three steps (φccc = φc) and need not be converge to dual maximizers.
This is related to the fact that the unregularized dual problem is constrained and therefore non-
smooth. Alternating maximization may therefore get stuck in the ‘ridge’ corresponding to the
constraint.

Similar to the classical c-transform, ψc,ν,ε inherits some regularity from c.

Lemma 3.27. Assume that c has a modulus of continuity ω in its first argument, i.e. c(x+δ, y) ≤
c(x, y) + ω(|δ|) (here ω : [0,∞) → [0,∞) is continuous and ω(0) = 0), then ψc,ν,ε has the same
modulus of continuity.

Proof.

ψc,ν,ε(x+ δ) = −ε · log

(∫
X

exp([ψ(y)− c(x+ δ, y)]/ε) dν(y)

)
≤ −ε · log

(∫
X

exp([ψ(y)− c(x, y)− ω(|δ|)]/ε) dν(y)

)
≤ ψc,ν,ε(x) + ω(|δ|).

Remark 3.28. Indeed, one can show even higher-order Sobolev type regularity of entropic
c-transforms for the squared distance cost, see for instance [Genevay et al., 2019]. This is a
crucial step for statistical stability of empirical (entropic) optimal transport. This higher-order
regularity deteriorates as ε → 0 and in the limit one obtains the ‘cursed’ convergence rates of
classical optimal transport.

This can be used for a simple convergence proof of the Sinkhorn algorithm, based on compactness.

Proposition 3.29. The Sinkhorn algorithm converges (up to subsequences and optimal constant
shifts) to a solution of the dual entropic OT problem. In particular, optimal dual solutions exist.

Proof. Since c ∈ C(X×X), there exists a modulus of continuity for both arguments. Hence, the
Sinkhorn iterates all have the same modulus of continuity and they are therefore equi-continuous.
Adding a constant shift to each φ(`+1) such that φ(`+1)(x0) = 0 for some arbitrary fixed x0 ∈ X
will merely result in a corresponding shift in the opposite direction in ψ(`+1). In particular the
sequence (φ(`))` will also be equibounded, as will be the sequence (ψ(`))`.
So by the Arzela–Ascoli theorem, there exists a pair of cluster points (φ, ψ) such that a suitable
subsequence of iterates (with some constant shifts) converges uniformly to these two functions.
Since the entropic c-transform is continuous, this means that φ = ψc,ν,ε and ψ = φc

>,µ,ε (here
c> denotes the ‘flipped’ cost function with first and second argument flipped).
This implies that γ := exp([φ⊕ψ− c]/ε) ·µ⊗ ν satisfies both marginal constraints, and thus the
tripled (γ, (φ, ψ)) is primal and dual optimal for the entropic OT problem.

Remark 3.30.

• The convergence (and optimality proof) above does not extend to the case ε = 0, since
being a fixed point of the c-transforms is not sufficient for optimality in the unregularized
problem.
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• The choice ρ = µ⊗ν was important in this section, as only by this choice does the expression
for ψc,ν,ε obtain spatial regularity independent of µ. This yields the compactness of the
iterates and existence of a continuous dual solutions.

Remark 3.31 (Matrix-scaling formulation). Introduce the functions

u := exp(φ/ε), v := exp(ψ/ε),

(and likewise applied to all the iterates of the Sinkhorn algorithm). Then the iterations can be
written as

u(`+1)(x) = 1/

∫
exp(−c(x, y)/ε)v(`)(y) dν(y),

v(`+1)(y) = 1/

∫
exp(−c(x, y)/ε)u(`+1)(x) dµ(x).

This can easily be expressed as matrix-vector multiplications in the discrete setting. This might
be a tad faster than the logsumexp-version, but is also numerically more prone to issues, especially
for small ε. There are many tricks for running the Sinkhorn algorithm stable and efficiently at
small ε.

Remark 3.32 (Speed of convergence).

• [Franklin and Lorenz, 1989]: linear convergence of dual iterates to maximizer in Hilbert’s
projective metric. But: contraction ratio approaches 1 like 1− exp(−‖c‖∞/ε) as ε→ 0.

• [Schmitzer, 2019]: convergence of an asymmetric (‘auction-like’) Sinkhorn algorithm in
O(1/ε) iterations (measured in L1-error of primal iterate marginal constraints)

• [Berman, 2020]: convergence of the Sinkhorn algorithm for the W2 distance on the Torus
in O(1/ε) iterations, by showing that the iterates asymptotically follow a non-linear PDE

• ε-scaling very efficient in practice (at least on ‘normal problems’) but no proof for its
efficiency yet (as far as I am aware).

• There are several variants of Sinkhorn, intended to be faster, such as the ‘Greenkhorn’
algorithm.

Remark 3.33 (Flexibility of the Sinkhorn algorithm). One of the biggest strengths of the
Sinkhorn algorithm is that it can easily be adapted to related problems, such as optimal transport
barycenters, multi-marginal transport problems (only efficient, if there is some trick to handle the
high problem dimensionality), and unbalanced transport problems. See for instance: [Benamou
et al., 2015; Peyré, 2015; Chizat et al., 2018; Benamou et al., 2019b]
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4 Multi-marginal transport

4.1 Introduction

Preface.

• Here use regularity setting of previous section.

• We have seen above (in the gluing lemma) that it is perfectly natural to consider ‘transport
plans’ or ‘couplings’ between more than two marginals.

Definition 4.1 (Multi-marginal optimal transport problem). For some N ∈ N, let ~µ = (µ1, . . . ,
µN ) ∈ P(X)N be a collection ofN probability measures. The set of corresponding multi-marginal
couplings is given by

Π(~µ) :=
{
π ∈ P(XN )

∣∣ pi#π = µi for i = 1, . . . , N
}
.

For a multi-marginal cost function c ∈ C(XN ) the multi-marginal transport problem is given by

C(~µ) :=

∫ {∫
XN

c(~x) dπ(~x)

∣∣∣∣π ∈ Π(~µ)

}
Proposition 4.2. For the above regularity setting (X compact, c continuous), minimizers for
the multi-marginal transport problem exist.

Remark 4.3 (Motivation). • ‘matching for teams’ Carlier and Ekeland [2010]: each µi could
represent agents of a different type (e.g. electricians, carpenters, painters, . . . ; but also: a
potential construction site), and one of each is required to finish a project (e.g. a house).
c(~x) denotes the cost of the agents x1 to xN being paired to build one house (e.g. factoring
in all travel distances and potentially pairwise animosities between the agents that may
not want to work together). Then the above problem finds the most efficient grouping
(generalization of pairing) of agents to finish all projects.

• we will study below: Wasserstein barycenter problem

• later this week: interaction between particles that move along paths.

Proposition 4.4 (Duality). One has

C(~µ) = sup

{∑
i

∫
X
φi dµi

∣∣∣∣∣~φ = (φ1, . . . , φN ) ∈ C(X)N ,
⊕
i

φi ≤ c

}

where (
⊕

i φi)(~x) =
∑

i φi(xi).

Proof. • We re-use a lot from standard Kantorovich duality, but here use Fenchel–Rockafellar
duality as in entropic transport, to obtain the dual problem.

• Write the dual problem as

sup
~φ

−F (A~φ)−G(−~φ)

for

G : C(X)N → R ∪ {∞}, G(~φ) =
∑
i

∫
X
φi dµi,

A : C(X)N → C(XN ), A~φ =
⊕
i

φi,

F : C(XN )→ R ∪ {∞}, F (ξ) =

{
0 if ξ ≤ c,
+∞ else.
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• The formal dual problem is then given by

inf
π∈M(XN )

F ∗(π) +G∗(A∗π)

where we find

G∗ :M(X)N → R ∪ {∞}, G∗(~ν) =

{
0 if νi = µi for all i,
+∞ else,

A∗ :M(XN )N →M(X)N , A∗π = (p1#π, . . . , pN#π),

F ∗ :M(XN )→ R ∪ {∞}, F ∗(π) =

{∫
XN c dπ if π ≥ 0,

+∞ else.

• Since c is bounded from below and G is linear, easy to find ~φ ∈ C(X)N such that G finite
at ~φ and F continuous at A~φ. So strong duality holds.

4.2 Wasserstein barycenter

Motivation.

• Similar to Euclidean space or Riemannian manifolds one can wonder what the weighted
center of mass of a tuple of probability measures ~µ = (µ1, . . . , µN ) in P(X)N with weights
~λ = (λ1, . . . , λN ) (λi > 0,

∑N
i=1 λi = 1) with respect to the squared Wasserstein distance

is.

• For simplicity, in this subsection we assume X is a compact, convex subset of Rd.

• The seminal paper on this is Agueh and Carlier [2011]. It is discussed in the textbooks
Santambrogio [2015] and Peyré and Cuturi [2019]. I collected a few basic computations for
convenience in Friesecke et al. [2021], from which mos of the following is taken. There is a
ton of exciting literature on algorithms and applications.

Definition 4.5 (Coupled-two-marginal formulation for Wasserstein barycenter). For ~µ ∈ P(X)N

set

WC2M(~µ)2 := inf

{
N∑
i=1

λi ·W (µi, ν)2

∣∣∣∣∣ν ∈M+(X)

}
. (1)

This is a nested optimization problem where one needs to minimize over ν ∈ M+(X) and over
each π ∈ M+(X2) within the W (µi, ν)2 terms. Hence, we refer to this as the coupled-two-
marginal formulation, as opposed to the multi-marginal formulation introduced below. Since
W (µi, ν)2 = +∞ when ‖µi‖ 6= ‖ν‖ (as the feasible set in the Kantorovich formulation for
W (µi, ν)2 is empty), we need not add the constraint ν ∈ P(X), as it is enforced automatically.

Proposition 4.6. Minimizers ν of (1) exist. A minimizer is called Wasserstein barycenter of ~µ
with weights ~λ.

A proof can be found in Agueh and Carlier [2011] or follows from standard arguments about
weak∗ compactness of bounded measures and weak∗ continuity of the Wasserstein distance on
compact metric spaces.
Complementarily, the Wasserstein barycenter problem can also be formulated as a multi-marginal
transport problem on XN with a suitable cost function.

Definition 4.7 (Multi-marginal formulation for Wasserstein barycenter).

cW,MM(~x) := inf
y∈X

N∑
i=1

λi |xi − y|2 =

N∑
i=1

λi |xi − T (~x)|2 =

N∑
i,j=1

λi λj
2
|xi − xj |2 (2)

where T (~x) :=
N∑
i=1

λi xi (3)

22



takes the points ~x to the unique minimizer y = T (~x) in the first line.

WMM(~µ)2 := inf

{∫
XN

cW,MM dπ
∣∣∣∣π ∈M+(XN ), pi]π = µi

}
(4)

Proposition 4.8 (Agueh and Carlier [2011]). WC2M(~µ)2 = WMM(~µ)2. ν is a minimizer of
(1) if and only if there exists a minimizer π of (4) such that T]π = ν (with T given by (3)).
Consequently, for minimizers π of (4) we will also call T]π a barycenter.

Proof. • Let π be a minimizer of (4), set ν := T]π and πi := (pi, T )]π for i = 1, . . . , N , where
(pi, T ) : XN → X2, ~x 7→ (xi, T (~x)).

• One finds that p1]πi = (p1 ◦ (pi, T ))]π = pi]π = µi and similarly p2]πi = ν, so that
πi ∈ Π(µi, ν). Therefore, one finds that

WMM(~µ)2 =

∫
XN

cW,MM dπ =

∫
XN

[
N∑
i=1

λi|xi − T (~x)|2
]
dπ(~x)

=

N∑
i=1

λi

∫
XN

|pi(~x)− T (~x)|2 dπ(~x)

=
N∑
i=1

λi

∫
X2

|x− y|2 d[(pi, T )]π](x, y)

=
N∑
i=1

λi

∫
X2

|x− y|2 dπi(x, y) ≥WC2M(~µ)2 . (5)

• Conversely, let now ν̂ be a minimizer of (1) and let π̂i ∈ Π(µi, ν̂) be an optimal plan for
W (µi, ν̂)2 for i = 1, . . . , N . Further, let (π̂yi )y∈X be the disintegration of π̂i w.r.t. its second
marginal. Introduce now the measure π̂ ∈M+(XN ) via∫

XN

φ dπ̂ :=

∫
XN+1

φ(~x) dπ̂y1(x1) . . . dπ̂yN (xN ) dν̂(y) (6)

for test functions φ ∈ C(XN ).

• One then finds for φ ∈ C(X) that∫
X
φ ◦ pi dπ̂ =

∫
X2

φ(xi) dπ̂
y
i (xi) dν̂(y) =

∫
X2

φ ◦ p1 dπ̂i =

∫
X
φ dµi

and therefore that pi]π̂ = µi.

• Consequently,

WMM(~µ)2 ≤
∫
XN

cW,MM dπ̂ =

∫
XN+1

(
inf
z∈X

N∑
i=1

λi|xi − z|2
)
dπ̂y1(x1) . . . dπ̂yN (xN ) dν̂(y)

≤
∫
XN+1

(
N∑
i=1

λi|xi − y|2
)
dπ̂y1(x1) . . . dπ̂yN (xN ) dν̂(y)

=
N∑
i=1

λi

∫
X2

|xi − y|2dπ̂yi (xi) dν̂(y) =

N∑
i=1

λi

∫
X2

|xi − y|2dπ̂i(xi, y)

=
N∑
i=1

λiW (µi, ν̂)2 = WC2M(~µ)2. (7)

• Combining (5) and (7) one finds that WMM(~µ)2 = WC2M(~µ)2 and that ν constructed from
π is optimal for WC2M(~µ)2 and π̂ constructed from ν̂ is optimal for WMM(~µ)2.

23



• In addition, by equality of WMM(~µ)2 and WC2M(~µ)2 the second inequality in (7) must
be an equality and thus one must have that y is a minimizer of z 7→

∑N
i=1 λi |xi − z|2

dπ̂y1(x1) . . . dπ̂yN (xN ) dν̂(y)-almost everywhere, i.e. y = T (~x) almost surely. Therefore, one
finds ∫

XN

φ ◦ T dπ̂ =

∫
X
φ dν̂

for φ ∈ C(X) and thus T]π̂ = ν̂.

Remark 4.9. • From a numerical perspective, the naive dimensionality of multi-marginal
problems increases exponentially with N , as one must handle measures (or functions) on
the space XN .

• Above we have seen that the multi-marginal problem for the Wasserstein barycenter has
an equivalent formulation as a ‘pairwise coupled’ transport problem. This is possible, since
in the multi-marginal transport cost cW,MM the xi do not ‘interact directly’, but merely
via the ‘proxy’ y. More generally, multi-marginal problems with ‘tree-structured’ cost
functions can be reduced to coupled pairwise problems, i.e. they are ‘simpler’ than general
multi-marginal problems.

• It is easy to derive Sinkhorn-type algorithms for multi-marginal transport problems and/or
their pairwise couplings via entropic regularization. See for instance Benamou et al. [2015,
2019b]; Haasler et al. [2021]; Beier et al. [2021] (and probably many more).

4.3 Outlook: measures on paths, superposition principle

Definition of path measures.

• Let X := H1([0, 1], X) be the Sobolev space of paths [0, 1] → X with square-integrable
weak derivative. By the Sobolev embedding theorem, curves in X are continuous.

• A measure λ ∈ P(X ) can be interpreted as a collection of traveling particles. For instance,
λ := δγ for some γ ∈ X represents a single particle, moving on the path γ.

• For t ∈ [0, 1], the map

evt : X → X, γ 7→ γ(t)

is called evaluation map. For a distribution of paths, λ ∈ P(X ), evt#λ ∈ P(X) gives the
distribution of positions at time t.

Benamou–Brenier energy of a measure path and of measure of paths.

• Let ρ : [0, 1]→ P(X) be a path of measures. Recall the Benamou–Brenier energy:

BB(ρ, v) :=

∫ 1

0

∫
X
‖v(t, ·)‖2 dρ(t) dt.

Introduce now the path energy:

E(ρ) := inf {BB(ρ, v)|v such that (ρ, v) solve CE between ρ(0) and ρ(1)}

• Likewise, introduce energy for measure of paths λ ∈ P(X ):

E(λ) :=

∫
X
c(γ) dλ(γ)

where c(γ) = ‖γ‖2H1 .

Theorem 4.10 (Superposition principle Lisini [2007]).

(1) For λ ∈ P(X ) with E(λ) <∞, set ρ : [0, 1] 3 t 7→ evt#λ. Then E(ρ) ≤ E(λ).
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(2) For all ρ : [0, 1] 7→ P(X) with E(ρ) <∞, there exists some λ ∈ P(X ) such that ρ(t) = evt#λ
and E(ρ) = E(λ).

Remark 4.11. So curves of measures with sufficient regularity (= finite BB energy, which
corresponds to being absolutely continuous in W2 in a metric sense), can be disintegrated into
curves of individual particles (measure on curves) that yield the same energy. In more detail,
the theorem also gives the expected statements on the Lagrangian and Eulerian velocity fields.

Remark 4.12 (BB energy of a path as inf-dim multi-marginal problem).

• By the above, for given ρ : [0, 1]→ P(X) we can compute E(ρ) as

E(ρ) = inf {BB(ρ, v)|v such that (ρ, v) solve CE between ρ(0) and ρ(1)}

or

E(ρ) = inf

{∫
X
c(γ) dλ(γ)

∣∣∣∣λ ∈ P(X ) such that evt#λ = ρ(t) for all t ∈ [0, 1]

}
• Formally the latter can be interpreted as infinite-dimensional multi-marginal problem, with

a tree-structured cost (in fact: chain-structured), and the former is the corresponding
decomposition into pairwise problems.

• For some large N ∈ N, purely formally, we can approximate the former as

EN,1(ρ) :=

N−1∑
i=0

W 2
2

(
ρ( i

N ), ρ( i+1
N )
)
,

and the latter as

EN,2(ρ) :=inf

{∫
XN

c(~x) dλ(~x)

∣∣∣∣λ ∈ P(XN ) such that pi#λ = ρ(i/N) for all i ∈ {0, . . . , N}
}
.

• This is a good starting point for rich modelling possibilities, e.g. for congestion constraints,
and a neat bridge to connect optimal transport with optimal control and mean field games.
See, for instance, Carlier et al. [2008]; Benamou et al. [2019a]; Sarrazin [2020] (some arbi-
trary references I could list from the top of my head; not exhaustive!).
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